Entropy Generation and Performance Assessment of Finned Tubes in Double-Pipe Heat Exchangers

Authors

DOI:

https://doi.org/10.31185/wjes.Vol13.Iss3.739

Keywords:

Heat Exchanger, Double pipe, Thermal performance, Micro Fins, Entropy, CFD Simulation, Nusselt Number, Effectiveness

Abstract

Double-pipe heat exchangers are widely used in thermal systems, and enhancing their performance is critical for energy efficiency. This study examines the impact of fin installation on heat transfer and entropy generation in a counterflow double-pipe heat exchanger using CFD simulation. The inner pipe is made of copper with an inner diameter of , outer diameter of  and 1000 mm in length. The outer pipe is made of PVC with an inner diameter of  and an outer diameter of  sharing the same length as the inner pipe. Numerical simulations were conducted to compare smooth and finned tubes under identical thermal and flow conditions. Entropy generation due to heat transfer and fluid friction was analyzed. The results showed that finned tubes improved heat transfer (Q) watts by up to 22%, particularly at higher hot water temperatures of 70 oC and 0.1 kg/s flow rate. However, this enhancement was accompanied by increased entropy generation up to 40%, indicating higher thermodynamic irreversibility. The study highlights the trade-off between thermal performance and entropy generation, providing valuable insight for optimizing heat exchanger design. The finned tube also showed good enhancement of Nusselt number by 46% and effectiveness by 20% compared to the smooth tube.

References

[1] S. M. Mousavi, A. Sheikhi Azizi, M. Razbin, A. A. Rabienataj Darzi, and M. Li, “Optimized design of Helical-Finned Double Pipe heat exchangers via numerical simulation and Artificial Intelligence,” Appl. Therm. Eng., vol. 258, p. 124605, Jan. 2025, doi: 10.1016/j.applthermaleng.2024.124605. DOI: https://doi.org/10.1016/j.applthermaleng.2024.124605

[2] H. H. Al-Kayiem, M. S. Kassim, and S. T. Taher, “Applications of Compound Nanotechnology and Twisted Inserts for Enhanced Heat Transfer,” in Inverse Heat Conduction and Heat Exchangers, S. Bhattacharya, M. Moghimi Ardekani, R. Biswas, and R. C. Mehta, Eds., IntechOpen, 2020. doi: 10.5772/intechopen.93359. DOI: https://doi.org/10.5772/intechopen.93359

[3] M. S. Kumar and S. Abraham, “Experimental and numerical studies of detailed heat transfer and flow characteristics in the rib turbulated annulus of a double pipe heat exchanger,” Int. J. Therm. Sci., vol. 207, p. 109382, Jan. 2025, doi: 10.1016/j.ijthermalsci.2024.109382.

[4] H. H. Al-Kayiem and M. F. El-Rahman, “RIBBED DOUBLE PIPE HEAT EXCHANGER: ANALYTICAL ANALYSIS,” J. Eng. Sci. Technol., vol. 6, no. 2011, pp. 39–49, 2011.

[5] Z. K. Kadhim and S. A. Mohammad, “CFD Study to Enhance the Heat Transfer in Heat Exchanger by Change the Outer Surface of the Inner Tube and Use Nano Fluid”, doi: 10.11648/j.es.20170203.12.

[6] Ashish sharma, A. Tyagi, and A. Kumar, “Thermal Analysis of Double Pipe Heat Exchanger,” Res. India Publ., vol. Volume 13, no. Number 6, pp. 299–302, 2018.

[7] A. J. Mansour, Z. K. Kadhim, and K. A. Hussein, “CFD study of Heat Transfer Characteristics for Annular Serrated Finned-Tube Heat Exchanger,” Nabu Res. Acad., vol. 5, no. 1, p. pp 77-87, 2018.

[8] S. S. Mozafarie, K. Javaherdeh, and O. Ghanbari, “Numerical simulation of nanofluid turbulent flow in a double-pipe heat exchanger equipped with circular fins,” J. Therm. Anal. Calorim., vol. 143, no. 6, pp. 4299–4311, Mar. 2021, doi: 10.1007/s10973-020-09364-w. DOI: https://doi.org/10.1007/s10973-020-09364-w

[9] S. D. Farahani, R. Sheikhi, and M. S. Kisomi, “Natural convection heat transfer in the annular space by using novel fins and water droplets injection,” Braz. J. Chem. Eng., vol. 39, no. 2, pp. 441–454, June 2022, doi: 10.1007/s43153-021-00123-4. DOI: https://doi.org/10.1007/s43153-021-00123-4

[10] S. Al-Zahrani, “Heat transfer characteristics of innovative configurations of double pipe heat exchanger,” Heat Mass Transf., vol. 59, no. 9, pp. 1661–1675, Sept. 2023, doi: 10.1007/s00231-023-03360-0. DOI: https://doi.org/10.1007/s00231-023-03360-0

[11] Safaa A. Saleh, Zena K. Kadhim, and Kamil Abdulhusein Khalaf, “CFD simulation of helical coil heat exchanger with Different coil pitch to heating heavy fuel oil,” Wasit J. Eng. Sci., vol. 11, no. 3, pp. 120–139, Dec. 2023, doi: 10.31185/ejuow.Vol11.Iss3.472. DOI: https://doi.org/10.31185/ejuow.Vol11.Iss3.472

[12] O. A. Mohsen, M. A. R. Muhammed, and B. O. Hasan, “Heat Transfer Enhancement in a Double Pipe Heat Exchanger Using Different Fin Geometries in Turbulent Flow,” Iran. J. Sci. Technol. Trans. Mech. Eng., vol. 45, no. 2, pp. 461–471, June 2021, doi: 10.1007/s40997-020-00377-2. DOI: https://doi.org/10.1007/s40997-020-00377-2

[13] M. A. Hussein and V. M. Hameed, “Experimental Investigation on the Effect of Semi-circular Perforated Baffles with Semi-circular Fins on Air–Water Double Pipe Heat Exchanger,” Arab. J. Sci. Eng., vol. 47, no. 5, pp. 6115–6124, May 2022, doi: 10.1007/s13369-021-05869-0. DOI: https://doi.org/10.1007/s13369-021-05869-0

[14] P. B M, B. Sadashive Gowda, and N. H V, “Experimental Investigation of the Effect of Integrated Fins on Heat Transfer Rate of Double Pipe Heat Exchanger,” J. Mines Met. Fuels, pp. 396–404, Mar. 2023, doi: 10.18311/jmmf/2022/32939. DOI: https://doi.org/10.18311/jmmf/2022/32939

[15] Safaa Abdul Adheem Saleh, Zena Khalefa Kadhim, and Kamil Abdulhusein Khalaf, “An Experimental Study of Heating Heavy Fuel Oil by Hot Air using Helical Fins in a Double-Pipe Heat Exchanger,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 112, no. 2, pp. 102–115, Jan. 2024, doi: 10.37934/arfmts.112.2.102115. DOI: https://doi.org/10.37934/arfmts.112.2.102115

[16] M. S. Kumar and S. Abraham, “Experimental and numerical studies of detailed heat transfer and flow characteristics in the rib turbulated annulus of a double pipe heat exchanger,” Int. J. Therm. Sci., vol. 207, p. 109382, Jan. 2025, doi: 10.1016/j.ijthermalsci.2024.109382. DOI: https://doi.org/10.1016/j.ijthermalsci.2024.109382

[17] ANSYS Fluent Theory Guide, 2021 R2. Canonsburg, PA, USA: ANSYS, Inc., 2021. [Online]. Available: https://www.ansys.com

[18] K. Thulukkanam, “Heat Exchanger Design Handbook, Second Edition,” CRC Press Taylor Francis Group, p. 1186, 2013. DOI: https://doi.org/10.1201/b14877

[19] A. I. Bashir, M. Everts, R. Bennacer, and J. P. Meyer, “Single-phase forced convection heat transfer and pressure drop in circular tubes in the laminar and transitional flow regimes,” Exp. Therm. Fluid Sci., vol. 109, p. 109891, Dec. 2019, doi: 10.1016/j.expthermflusci.2019.109891. DOI: https://doi.org/10.1016/j.expthermflusci.2019.109891

[20] Y. A. Çengel and A. J. Ghajar, Heat and mass transfer: fundamentals & applications, 5th edition. New York, NY: McGraw-Hill Education, 2015.

[21] G. S. Dhumal and S. N. Havaldar, “Experimental investigation of entropy generation in a pipe heat exchanger with turbulence generator inside and on the outside,” Case Stud. Therm. Eng., vol. 51, p. 103464, Nov. 2023, doi: 10.1016/j.csite.2023.103464. DOI: https://doi.org/10.1016/j.csite.2023.103464

[22] S. Kumar, K. V. Karanth, and K. Murthy, “Numerical study of heat transfer in a finned double pipe heat exchanger”.

[23] L. N. Thanh, L. M. Nhut, and A.-Q. Hoang, “The heat transfer and entropy generation of fin and inclined flat tube heat exchanger,” Case Stud. Therm. Eng., vol. 56, p. 104202, Apr. 2024, doi: 10.1016/j.csite.2024.104202. DOI: https://doi.org/10.1016/j.csite.2024.104202

Downloads

Published

2025-09-01

Issue

Section

Mechanical Engineering

How to Cite

Ali Arkan Alwan, Kadhem, Z., Al-Kayiem, H., & Shatha Ali Merdan. (2025). Entropy Generation and Performance Assessment of Finned Tubes in Double-Pipe Heat Exchangers. Wasit Journal of Engineering Sciences, 13(3), 62-73. https://doi.org/10.31185/wjes.Vol13.Iss3.739