Design and Implementation of High-Gain Wide-Bandwidth Patch Antenna Array 5G Base Stations
DOI:
https://doi.org/10.31185/wjes.Vol13.Iss3.685Keywords:
Microstrip Patch Antenna, Power Divider, 1x4 Antenna Array, mmWave, 5G Base Station, defected ground structure (DGS), voltage standing wave ratio VSWR.Abstract
This article introduces an analysis and design of an array of elements consisting of four antenna elements connected by a power divider. This proposed antenna possesses better performance for 5G base station mmWave applications. The 1 x 4 T junction power divider feeding technique achieved the design of these arrays. This power divider provided an easy model, low spurious radiation, and the best bandwidth. This work presents an antenna array simulated with the HFSS at a working frequency of 28 GHz.The substrate material used is Roger4003, with a thickness of 0.4 mm, permittivity of 3.5, and a loss tangent of 0.0027. The results of simulations derived from this research work are as follows: VSWR 1, reflection coefficient S11 -34 dB, gain 11 dB, bandwidth 2.56 GHz, directivity 11.1 dB, efficiency 96%. As discussed in the last part of the article, this proposed 5G base station array has realized enhanced performance compared to other antenna array designs. Consequently, it is positioned to arise as a significant contender for 5G applications.
References
[1] L. Wang, M. Q. Yuan, and Q. H. Liu, “A dual-band printed electrically small antenna covered by two capacitive split-ring resonators,” IEEE Antennas Wirel Propag Lett, vol. 10, pp. 824–826, 2011. DOI: https://doi.org/10.1109/LAWP.2011.2164890
[2] E.-S. Abdelhafid et al., “Very low phase noise voltage controlled oscillator for 5G mm-wave communication systems,” in 2020 1st international conference on innovative research in applied science, engineering and technology (IRASET), IEEE, 2020, pp. 1–4.
[3] Q. M. Gatea, N. Al-Kafahji, F. M. Ali, and A. J. Alyasiri, “Hash unit cell shape used to enhancement gain and bandwidth of metasurface antenna,” in Journal of Physics: Conference Series, IOP Publishing, 2020, p. 12022. DOI: https://doi.org/10.1088/1742-6596/1664/1/012022
[4] Q. M. Gatea, F. M. Ali, N. Al-Kafahji, and A. J. Alyasiri, “Gradient distribution of metasurface based antenna performance enhancement,” in AIP Conference Proceedings, AIP Publishing, 2020. DOI: https://doi.org/10.1063/5.0027378
[5] Z. Ding et al., “Application of non-orthogonal multiple access in LTE and 5G networks,” IEEE Communications Magazine, vol. 55, no. 2, pp. 185–191, 2017. DOI: https://doi.org/10.1109/MCOM.2017.1500657CM
[6] Q. M. Gatea, N. Al-Kafahji, F. M. Ali, and H. Al-Saedi, “Design dual-layer metasurfaces antenna for wireless application,” in AIP Conference Proceedings, AIP Publishing, 2023. DOI: https://doi.org/10.1063/5.0157400
[7] A. Es-Saqy et al., “28 GHz balanced pHEMT VCO with low phase noise and high output power performance for 5G mm-wave systems,” International Journal of Electrical and Computer Engineering, vol. 10, no. 5, p. 4623, 2020. DOI: https://doi.org/10.11591/ijece.v10i5.pp4623-4630
[8] M. Boumaiz, M. El Ghazi, S. Mazer, M. El Bekkali, A. Bouayad, and M. Fattah, “Performance analysis of DQPSK and DBPSK modulation schemes for a scheduled access phase based Wireless Body Area Network,” in 2018 9th International Symposium on Signal, Image, Video and Communications (ISIVC), IEEE, 2018, pp. 163–167. DOI: https://doi.org/10.1109/ISIVC.2018.8709232
[9] A. Maroua and F. Mohammed, “Characterization of ultra wide band indoor propagation,” in 2019 7th Mediterranean congress of telecommunications (CMT), IEEE, 2019, pp. 1–4. DOI: https://doi.org/10.1109/CMT.2019.8931367
[10] W. Hong et al., “Multibeam antenna technologies for 5G wireless communications,” IEEE Trans Antennas Propag, vol. 65, no. 12, pp. 6231–6249, 2017. DOI: https://doi.org/10.1109/TAP.2017.2712819
[11] Q. M. Gatea, M. A. Alkhafaji, and M. T. Güneşer, “Design and simulation for triple-band metasurface slot antenna,” in AIP Conference Proceedings, AIP Publishing, 2023. DOI: https://doi.org/10.1063/5.0157399
[12] M. J. Marcus, “5G and" IMT for 2020 and beyond"[Spectrum Policy and Regulatory Issues],” IEEE Wirel Commun, vol. 22, no. 4, pp. 2–3, 2015. DOI: https://doi.org/10.1109/MWC.2015.7224717
[13] S. Sridevi and K. Mahendran, “Design of millimeter-wave microstrip patch antenna for MIMO communication,” International Research Journal of Engineering and Technology, vol. 4, no. 10, pp. 1513–1518, 2017.
[14] S. Didi, I. Halkhams, M. Fattah, Y. Balboul, S. Mazer, and M. El Bekkali, “Study and design of printed rectangular microstrip antenna arrays at an operating frequency of 27.5 GHz for 5G applications,” 2021.
[15] Q. M. Gatea, “Array of Slot Metasurface Units Cell for Wireless Application,” in 2022 Iraqi International Conference on Communication and Information Technologies (IICCIT), IEEE, 2022, pp. 114–119. DOI: https://doi.org/10.1109/IICCIT55816.2022.10010608
[16] A. A. R. Saad and H. A. Mohamed, “Printed millimeter-wave MIMO-based slot antenna arrays for 5G networks,” AEU-International Journal of Electronics and Communications, vol. 99, pp. 59–69, 2019. DOI: https://doi.org/10.1016/j.aeue.2018.11.029
[17] I.-J. Hwang, B. Ahn, S.-C. Chae, J.-W. Yu, and W.-W. Lee, “Quasi-Yagi antenna array with modified folded dipole driver for mmWave 5G cellular devices,” IEEE Antennas Wirel Propag Lett, vol. 18, no. 5, pp. 971–975, 2019. DOI: https://doi.org/10.1109/LAWP.2019.2906775
[18] R. Thandaiah Prabu, M. Benisha, V. Thulasi Bai, and R. Ranjeetha, “Design of 5G mm-wave antenna using line feed and corporate feed techniques,” in Smart Intelligent Computing and Applications: Proceedings of the Second International Conference on SCI 2018, Volume 1, Springer, 2019, pp. 367–380. DOI: https://doi.org/10.1007/978-981-13-1921-1_37
[19] M. Roodaki-Lavasani-Fard, S. Sinha, C. Soens, G. A. E. Vandenbosch, K. Mohammadpour-Aghdam, and R. Faraji-Dana, “Shared aperture dual-wideband planar antenna arrays using any-layer PCB technology for mm-wave applications,” IEEE Trans Antennas Propag, vol. 70, no. 2, pp. 1087–1096, 2021. DOI: https://doi.org/10.1109/TAP.2021.3111313
[20] M. M. M. Ali and A. Sebak, “Printed RGW circularly polarized differential feeding antenna array for 5G communications,” IEEE Trans Antennas Propag, vol. 67, no. 5, pp. 3151–3160, 2019. DOI: https://doi.org/10.1109/TAP.2019.2900411
[21] N. Ojaroudi Parchin et al., “Frequency reconfigurable antenna array for mm-Wave 5G mobile handsets,” in Broadband Communications, Networks, and Systems: 9th International EAI Conference, Broadnets 2018, Faro, Portugal, September 19–20, 2018, Proceedings 9, Springer, 2019, pp. 438–445. DOI: https://doi.org/10.1007/978-3-030-05195-2_43
[22] L. G. Ayalew and F. M. Asmare, “Design and optimization of pi-slotted dual-band rectangular microstrip patch antenna using surface response methodology for 5G applications,” Heliyon, vol. 8, no. 12, 2022. DOI: https://doi.org/10.1016/j.heliyon.2022.e12030
[23] W. A. Awan, M. Soruri, M. Alibakhshikenari, and E. Limiti, “On-Demand Frequency Switchable Antenna Array Operating at 24.8 and 28GHz for 5G High-Gain Sensors Applications.,” Progress In Electromagnetics Research M, vol. 108, 2022. DOI: https://doi.org/10.2528/PIERM21121102
[24] H. Zahra, W. A. Awan, N. Hussain, S. M. Abbas, and S. Mukhopadhyay, “Helix inspired 28 GHz broadband antenna with end-fire radiation pattern,” Computers, Materials and Continua, vol. 70, no. 1, pp. 1935–1944, 2022. DOI: https://doi.org/10.32604/cmc.2022.019495
[25] W. A. Awan, M. Alibakhshikenari, and E. Limiti, “High gain dual parasitic patch loaded wideband antenna for 28 GHz 5G applications,” in 2021 International Symposium on Antennas and Propagation (ISAP), IEEE, 2021, pp. 1–2. DOI: https://doi.org/10.23919/ISAP47258.2021.9614441
[26] N. Hussain, W. A. Awan, W. Ali, S. I. Naqvi, A. Zaidi, and T. T. Le, “Compact wideband patch antenna and its MIMO configuration for 28 GHz applications,” AEU-International Journal of Electronics and Communications, vol. 132, p. 153612, 2021. DOI: https://doi.org/10.1016/j.aeue.2021.153612
[27] H. Zahra, W. A. Awan, W. A. E. Ali, N. Hussain, S. M. Abbas, and S. Mukhopadhyay, “A 28 GHz broadband helical inspired end-fire antenna and its MIMO configuration for 5G pattern diversity applications,” Electronics (Basel), vol. 10, no. 4, p. 405, 2021. DOI: https://doi.org/10.3390/electronics10040405
[28] S. Ashraf, J. A. Sheikh, and Z. A. Bhat, “A high gain multi slotted and compact planar microstrip millimeter wave antenna for 5G networks,” Progress In Electromagnetics Research M, vol. 108, pp. 175–186, 2022. DOI: https://doi.org/10.2528/PIERM22010904
[29] S.-E. Didi, I. Halkhams, M. Fattah, Y. Balboul, S. Mazer, and M. El Bekkali, “Design of a microstrip antenna patch with a rectangular slot for 5G applications operating at 28 GHz,” TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 20, no. 3, pp. 527–536, 2022. DOI: https://doi.org/10.12928/telkomnika.v20i3.23159
[30] A. Es-Saqy et al., “A 5G mm-wave compact voltage-controlled oscillator in 0.25 µm pHEMT technology,” International Journal of Electrical and Computer Engineering, vol. 11, no. 2, p. 1036, 2021. DOI: https://doi.org/10.11591/ijece.v11i2.pp1036-1042
[31] S.-E. Didi, I. Halkhams, M. Fattah, Y. Balboul, S. Mazer, and M. El Bekkali, “Design of a microstrip antenna two-slot for fifth generation applications operating at 27.5 GHz,” in International Conference on Digital Technologies and Applications, Springer, 2021, pp. 1081–1089. DOI: https://doi.org/10.1007/978-3-030-73882-2_99
[32] Q. M. Gatea and F. M. Ali, “Exploring Various Switching Techniques Employed in Designing a Reconfigurable Antenna: A Review,” in International Conference On Innovative Computing And Communication, Springer, 2024, pp. 647–666. DOI: https://doi.org/10.1007/978-981-97-4228-8_42
[33] A. El Ansari, S. Das, I. Tabakh, B. T. P. Madhav, A. Bendali, and N. E. A. El Idrissi, “Design and Realization of a broadband multi-beam 1× 2 array antenna based on 2× 2 Butler Matrix for 2.45 GHz RFID Reader Applications,” Journal of Circuits, Systems and Computers, vol. 31, no. 17, p. 2250305, 2022. DOI: https://doi.org/10.1142/S0218126622503054
[34] A. El Ansari, T. Islam, S. V Rama Rao, A. Saravanan, S. Das, and N. E. A. El Idrissi, “A Broadband Microstrip 1 x 8 Magic-T Power Divider for ISM Band Array Antenna Applications,” 2023.
[35] A. El Ansari, L. Kabouri, and E. Ahouzi, “Random attack on Asymmetric Cryptosystem based on phase-truncated fourier transforms,” in 2014 International Conference on Next Generation Networks and Services (NGNS), IEEE, 2014, pp. 65–68. DOI: https://doi.org/10.1109/NGNS.2014.6990229
[36] U. Ullah, M. Al-Hasan, S. Koziel, and I. Ben Mabrouk, “A series inclined slot-fed circularly polarized antenna for 5G 28 GHz applications,” IEEE Antennas Wirel Propag Lett, vol. 20, no. 3, pp. 351–355, 2021. DOI: https://doi.org/10.1109/LAWP.2021.3049901
[37] Q. M. Gatea, M. A. Alkhafaji, M. T. Guneser, and A. J. Obaid, “Wideband and High Gain Antenna of Flowers Patches for Wireless Application,” in International Conference on Frontiers of Intelligent Computing: Theory and Applications, Springer, 2023, pp. 433–445. DOI: https://doi.org/10.1007/978-981-99-6702-5_36
[38] Y. Rahayu and M. I. Hidayat, “Design of 28/38 GHz dual-band triangular-shaped slot microstrip antenna array for 5G applications,” in 2018 2nd international conference on telematics and future generation networks (TAFGEN), IEEE, 2018, pp. 93–97. DOI: https://doi.org/10.1109/TAFGEN.2018.8580487
[39] M. Nabil and M. M. A. Faisal, “Design, simulation and analysis of a high gain small size array antenna for 5G wireless communication,” Wirel Pers Commun, vol. 116, no. 4, pp. 2761–2776, 2021. DOI: https://doi.org/10.1007/s11277-020-07819-9
[40] H.-C. Huang, Y. Wang, and X. Jian, “Novel integrated design of a dual-band dual-polarization 5G mm-wave antenna array fed by FPCs with a U-slotted full-metal case for a cellular phone,” in 2019 International Workshop on Antenna Technology (iWAT), IEEE, 2019, pp. 50–53. DOI: https://doi.org/10.1109/IWAT.2019.8730623
[41] M. S. Sharawi and M. Ikram, “Slot-based connected antenna arrays for 5G mobile terminals,” in 2018 International Workshop on Antenna Technology (iWAT), IEEE, 2018, pp. 1–3. DOI: https://doi.org/10.1109/IWAT.2018.8379256
[42] D. Mungur and S. Duraikannan, “Design and analysis of 28 GHz millimeter wave antenna array for 5G communication systems,” Journal of Science Technology Engineering and Management-Advanced Research & Innovation, vol. 1, no. 3, p. 10, 2018.
[43] J. Khan, D. A. Sehrai, and U. Ali, “Design of dual band 5G antenna array with SAR analysis for future mobile handsets,” Journal of Electrical Engineering & Technology, vol. 14, pp. 809–816, 2019. DOI: https://doi.org/10.1007/s42835-018-00059-9
[44] C. K. Ali and M. H. Arif, “Dual-band millimeter-wave microstrip patch array antenna for 5G smartphones,” in 2019 International Conference on Advanced Science and Engineering (ICOASE), IEEE, 2019, pp. 181–185. DOI: https://doi.org/10.1109/ICOASE.2019.8723719
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Qahtan Mutar Gatea, Faris Mohammed Ali

This work is licensed under a Creative Commons Attribution 4.0 International License.

