Metaheuristic Algorithm to Find Optimal Sizing of Stand-Alone Hybrid Energy System in Remote Areas: A review

Authors

  • ABBAS Q.MOHAMMED University of Thi-Qar
  • Kassim A. Al-Anbarri Mustansiriyah University image/svg+xml
  • Ihsan Mousa Jawad Ministry of Education/ Babylon/ School building department

DOI:

https://doi.org/10.31185/ejuow.Vol12.Iss4.600

Keywords:

Metaheuristic Algorithm, optimal sizing, standalone hybrid energy system

Abstract

In remote areas, electricity is provided by diesel generators, which have many disadvantages, such as their dependence entirely on fossil fuels that cause global warming due to emissions of harmful gases such as carbon dioxide, and the high maintenance cost of these generators, as well as the difficulty of transporting fossil fuels to them. Therefore, the world has tended to use renewable energy sources, due to their advantages such as their presence in all regions of the world, they do not emit harmful gases and their long life. However, renewable energy sources also have disadvantages such as high investment cost, and their intermittent nature because they depend on climate data. Therefore, the optimal sizing of these sources is considered an important factor to increase reliability, reduce emissions, reduce costs, and other goals. These problems can be solved by modern techniques, a metaheuristic algorithm that is more famous than traditional algorithms because it has good results and faster processing time. In this paper, we present a comprehensive review for used metaheuristic algorithms to find the optimal sizing of the energies used in the hybrid energy system (HES) for single and multi-objective optimization. Also, we review the main combinations of HES including their assessment parameters of economics, environmental, and reliability.

 

References

Fadaee, M., & Radzi, M. A. M. (2012). Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: A review. Renewable and sustainable energy reviews, 16(5), 3364-3369

Zeng, J., Li, M., Liu, J. F., Wu, J., & Ngan, H. W. (2010, July). Operational optimization of a stand-alone hybrid renewable energy generation system based on an improved genetic algorithm. In IEEE PES general meeting (pp. 1-6). IEEE.‏

Ahmad, S., Ab Kadir, M. Z. A., & Shafie, S. (2011). Current perspective of the renewable energy development in Malaysia. Renewable and sustainable energy reviews, 15(2), 897-904.‏

Mtshali, T. R., Coppez, G., Chowdhury, S., & Chowdhury, S. P. (2011, July). Simulation and modelling of PV-wind-battery hybrid power system. In 2011 IEEE Power and Energy Society General Meeting (pp. 1-7). IEEE.‏

Perera, A. T. D., Attalage, R. A., Perera, K. K. C. K., & Dassanayake, V. P. C. (2013). Designing standalone hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission. Energy, 54, 220-230.‏

Bandara, K., Sweet, T., & Ekanayake, J. (2012). Photovoltaic applications for off-grid electrification using novel multi-level inverter technology with energy storage. Renewable Energy, 37(1), 82-88.‏

Bansal, M., Saini, R. P., & Khatod, D. K. (2013). Development of cooking sector in rural areas in India—A review. Renewable and Sustainable Energy Reviews, 17, 44-53.‏

Balcombe, P., Rigby, D., & Azapagic, A. (2013). Motivations and barriers associated with adopting microgeneration energy technologies in the UK. Renewable and Sustainable Energy Reviews, 22, 655-666.‏

Moghavvemi, M., Ismail, M. S., Murali, B., Yang, S. S., Attaran, A., & Moghavvemi, S. (2013). Development and optimization of a PV/diesel hybrid supply system for remote controlled commercial large scale FM transmitters. Energy Conversion and Management, 75, 542-551.‏

Olatomiwa, L., Mekhilef, S., Ismail, M. S., & Moghavvemi, M. (2016). Energy management strategies in hybrid renewable energy systems: A review. Renewable and Sustainable Energy Reviews, 62, 821-835

Al-Shamma'a, A. A., & Addoweesh, K. E. (2012, December). Optimum sizing of hybrid PV/wind/battery/diesel system considering wind turbine parameters using Genetic Algorithm. In 2012 IEEE International Conference on Power and Energy (PECon) (pp. 121-126). IEEE.‏

Montes, G. M., López, M. D. M. S., Gámez, M. D. C. R., & Ondina, A. M. (2005). An overview of renewable energy in Spain. The small hydro-power case. Renewable and Sustainable Energy Reviews, 9(5), 521-534

Yusaf, T., Goh, S., & Borserio, J. A. (2011). Potential of renewable energy alternatives in Australia. Renewable and sustainable energy reviews, 15(5), 2214-2221.‏

Kelly, G. (2011). History and potential of renewable energy development in New Zealand. Renewable and Sustainable Energy Reviews, 15(5), 2501-2509.‏

Milbrandt, A. R., Heimiller, D. M., Perry, A. D., & Field, C. B. (2014). Renewable energy potential on marginal lands in the United States. Renewable and Sustainable Energy Reviews, 29, 473-481.‏

Nematollahi, O., Hoghooghi, H., Rasti, M., & Sedaghat, A. (2016). Energy demands and renewable energy resources in the Middle East. Renewable and Sustainable Energy Reviews, 54, 1172-1181.‏

Iyer, A. S., Couch, S. J., Harrison, G. P., & Wallace, A. R. (2013). Variability and phasing of tidal current energy around the United Kingdom. Renewable Energy, 51, 343-357.‏

Guo, S., Liu, Q., Sun, J., & Jin, H. (2018). A review on the utilization of hybrid renewable energy. Renewable and Sustainable Energy Reviews, 91, 1121-1147.‏

Nayar, C. V., Lawrance, W. B., & Phillips, S. J. (1989, August). Solar/wind/diesel hybrid energy systems for remote areas. In Proceedings of the 24th Intersociety Energy Conversion Engineering Conference (pp. 2029-2034). IEEE.‏

Markvart, T. (1996). Sizing of hybrid photovoltaic-wind energy systems. solar energy, 57(4), 277-281.‏

Outlook, S. A. E. (2015). World energy outlook special report. International Energy Agency, 135.‏

Suresh, M., & Meenakumari, R. (2019). An improved genetic algorithm-based optimal sizing of solar photovoltaic/wind turbine generator/diesel generator/battery connected hybrid energy systems for standalone applications. International Journal of Ambient Energy, 1-8.‏

Al-Shamma'a, A. A., & Addoweesh, K. E. (2012, December). Optimum sizing of hybrid PV/wind/battery/diesel system considering wind turbine parameters using Genetic Algorithm. In 2012 IEEE International Conference on Power and Energy (PECon) (pp. 121-126). IEEE.‏

Krishna, K. S., & Kumar, K. S. (2015). A review on hybrid renewable energy systems. Renewable and Sustainable Energy Reviews, 52, 907-916.‏

Shi, B., Wu, W., & Yan, L. (2017). Size optimization of stand-alone PV/wind/diesel hybrid power generation systems. Journal of the Taiwan Institute of Chemical Engineers, 73, 93-101.‏

Kibria, M. T., Ahammed, A., Sony, S. M., Hossain, F., & Islam, S. U. (2014, September). A Review: Comparative studies on different generation solar cells technology. In Proc. of 5th International Conference on Environmental Aspects of Bangladesh (pp. 51-53).‏

Hai, T., Sharafati, A., Mohammed, A., Salih, S. Q., Deo, R. C., Al-Ansari, N., & Yaseen, Z. M. (2020). Global solar radiation estimation and climatic variability analysis using extreme learning machine based predictive model. IEEE Access, 8, 12026-12042.‏

Dufo-López, R., & Bernal-Agustín, J. L. (2008). Influence of mathematical models in design of PV-Diesel systems. Energy Conversion and management, 49(4), 820-831.‏

Sedghi, M., & Kazemzadeh Hannani, S. (2016). Modeling and optimizing of PV–wind–diesel hybrid systems for electrification of remote villages in Iran. scientiairanica, 23(4), 1719-1730.‏

Salih, S. Q., & Alsewari, A. A. (2020). A new algorithm for normal and large-scale optimization problems: Nomadic People Optimizer. Neural Computing and Applications, 32(14), 10359-10386.‏

Hansen, N., Müller, S. D., & Koumoutsakos, P. (2003). Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evolutionary computation, 11(1), 1-18.‏

Storn, R., & Price, K. (1997). Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization, 11(4), 341-359.‏

Yao, X., Liu, Y., & Lin, G. (1999). Evolutionary programming made faster. IEEE Transactions on Evolutionary computation, 3(2), 82-102.‏

Simon, D. (2008). Biogeography-based optimization. IEEE transactions on evolutionary computation, 12(6), 702-713.‏

Jadon, S. S., Bansal, J. C., Tiwari, R., & Sharma, H. (2015). Accelerating artificial bee colony algorithm with adaptive local search. Memetic Computing, 7(3), 215-230.‏

Espitia, H. E., & Sofrony, J. I. (2018). Statistical analysis for vortex particle swarm optimization. Applied Soft Computing, 67, 370-386.‏

Yang, X. S. (2009, October). Firefly algorithms for multimodal optimization. In International symposium on stochastic algorithms (pp. 169-178). Springer, Berlin, Heidelberg.‏

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in engineering software, 69, 46-61.‏

Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in engineering software, 95, 51-67.‏

Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303-315.‏

Kumar, M., Kulkarni, A. J., & Satapathy, S. C. (2018). Socio evolution & learning optimization algorithm: A socio-inspired optimization methodology. Future Generation Computer Systems, 81, 252-272.‏

Kuo, H. C., & Lin, C. H. (2013). Cultural evolution algorithm for global optimizations and its applications. Journal of applied research and technology, 11(4), 510-522.‏

Nematollahi, A. F., Rahiminejad, A., & Vahidi, B. (2017). A novel physical based meta-heuristic optimization method known as Lightning Attachment Procedure Optimization. Applied Soft Computing, 59, 596-621.‏

Lipcsey, Z. S., Effanga, E. O., & Obikwere, C. A. (2019). Single and multi-objective optimization-a comparative analysis. J. Math. Comput. Sci., 9(1), 1-18.‏

Fodhil, F., Hamidat, A., & Nadjemi, O. Optimal Sizing of Stand-Alone Hybrid PV-Diesel-Battery System Using PSO and the ε-Constraint Method.‏2016.

JOTY,S.M, AHMED,Z.U,& DAS,B.K.(2018). OPTIMAL SIZING OF A STAND-ALONE PV/WIND/ICE/BATTERYFOR APPLICATION OF A UNIVERSITY CAMPUS IN BANGLADESH. 29th International Conference, Sydney, Australia, 24th-25t.

S. M. H. Baygi, A. Elahi, and A. Karsaz, ``A novel framework for optimal sizing of hybrid stand-alone renewable energy system: A gray wolf optimizer,'' in Proc. 3rd Conf. Swarm Intell. Evol. Comput. (CSIEC), Bam, Iran, Mar. 2018, pp. 15.

Lipcsey, Z. S., Effanga, E. O., & Obikwere, C. A. (2019). Single and multi-objective optimization-a comparative analysis. J. Math. Comput. Sci., 9(1), 1-18.‏

W. M. Hamanah, M. A. Abido, and L. M. Alhems, ``Optimum sizing of hybrid PV, wind, battery and diesel system using lightning search algorithm,'' Arabian J. Sci. Eng., vol. 45, no. 3, pp. 18711883, Mar. 2020.

Diab, A.A.Z.; Sultan, H.M.; Mohamed, I.S.; Kuznetsov, O.N.; Do, T.D. Application of Different Optimization Algorithms for Optimal Sizing of PV/Wind/Diesel/Battery Storage Stand-Alone Hybrid Microgrid. IEEE Access 2019, 7, 119223–119245.

Ruiz, S., & Espinosa, J. (2018). Multi-objective optimal sizing design of a Diesel-PV-Wind-Battery hybrid power system in Colombia. International Journal of Smart Grid-ijSmartGrid, 2(1), 49-57.‏

Bukar, A.L.; Tan, C.W.; Lau, K.Y. Optimal sizing of an autonomous photovoltaic/wind/battery/diesel generator microgrid using grasshopper optimization algorithm. Sol. Energy 2019, 188, 685–696

Lee, K. H. (2014). Optimization of a hybrid electric power system design for large commercial buildings: an application design guide (Doctoral dissertation, Colorado School of Mines. Arthur Lakes Library).‏

Chaichan, M. T., Kazem, H. A., Mahdy, A. M., & Al-Waeely, A. A. (2016). Optimal sizing of a hybrid system of renewable energy for lighting street in Salalah-Oman using Homer software. International Journal of Scientific Engineering and Applied Science (IJSEAS), 2(5), 157-164.‏

Kaabeche, A., & Bakelli, Y. (2019). Renewable hybrid system size optimization considering various electrochemical energy storage technologies. Energy Conversion and Management, 193, 162-175.‏

Bingham, R. D., Agelin-Chaab, M., & Rosen, M. A. (2019). Whole building optimization of a residential home with PV and battery storage in The Bahamas. Renewable Energy, 132, 1088-1103.‏

Carriere, T., Vernay, C., Pitaval, S., Neirac, F. P., & Kariniotakis, G. (2019). Strategies for combined operation of PV/storage systems integrated into electricity markets. IET Renewable Power Generation, 14(1), 71-79.‏

Liu, X., Chen, H. K., Huang, B. Q., & Tao, Y. B. (2017). Optimal Sizing for Wind/PV/Battery System Using Fuzzy-Means Clustering with Self-Adapted Cluster Number. International Journal of Rotating Machinery, 2017.‏

Olatomiwa, L. J., Mekhilef, S., & Huda, A. S. N. (2014, October). Optimal sizing of hybrid energy system for a remote telecom tower: A case study in Nigeria. In 2014 IEEE Conference on Energy Conversion (CENCON) (pp. 243-247). IEEE.‏

Ekoh, S., Unsal, I., & Maheri, A. (2016, September). Optimal sizing of wind-PV-pumped hydro energy storage systems. In 2016 4th International Symposium on Environmental Friendly Energies and Applications (EFEA) (pp. 1-6). IEEE.‏

Luo, Y., Shi, L., & Tu, G. (2014). Optimal sizing and control strategy of isolated grid with wind power and energy storage system. Energy Conversion and Management, 80, 407-415.‏

Nakayama, H., Hiraki, E., Tanaka, T., Koda, N., Takahashi, N., & Noda, S. (2008, September). Stand-alone photovoltaic generation system with combined storage using lead battery and EDLC. In 2008 13th International Power Electronics and Motion Control Conference (pp. 1877-1883). IEEE

Wang, H., & Zhang, D. (2010, June). The stand-alone PV generation system with parallel battery charger. In 2010 International Conference on Electrical and Control Engineering (pp. 4450-4453). IEEE.‏

Glavin, M. E., Chan, P. K., Armstrong, S., & Hurley, W. G. (2008, September). A stand-alone photovoltaic supercapacitor battery hybrid energy storage system. In 2008 13th International power electronics and motion control conference (pp. 1688-1695). IEEE.‏

Hernández, J. C., Sanchez-Sutil, F., & Muñoz-Rodríguez, F. J. (2019). Design criteria for the optimal sizing of a hybrid energy storage system in PV household-prosumers to maximize self-consumption and self-sufficiency. Energy, 186, 115827

Mahdy, A. M., Al-Waeli, A. A., & Al-Asadi, K. A. (2017). Can Iraq use the wind energy for power generation?. International Journal of Computation and Applied Sciences IJOCAAS, 3(2), 233-238.‏

Abd el Motaleb, A. M., Bekdache, S. K., & Barrios, L. A. (2016). Optimal sizing for a hybrid power system with wind/energy storage based in stochastic environment. Renewable and Sustainable Energy Reviews, 59, 1149-1158.‏

Badejani, M. M., Masoum, M. A. S., & Kalanta, M. (2007, December). Optimal design and modeling of stand-alone hybrid PV-wind systems. In 2007 Australasian Universities Power Engineering Conference (pp. 1-6). IEEE

Menniti, D., Pinnarelli, A., & Sorrentino, N. (2009, June). A method to improve microgrid reliability by optimal sizing PV/Wind plants and storage systems. In CIRED 2009-20th International Conference and Exhibition on Electricity Distribution-Part 1 (pp. 1-4). IET.‏

Hemeida, A. M., El-Ahmar, M. H., El-Sayed, A. M., Hasanien, H. M., Alkhalaf, S., Esmail, M. F. C., & Senjyu, T. (2020). Optimum design of hybrid wind/PV energy system for remote area. Ain Shams Engineering Journal, 11(1), 11-23.‏

Kaur, R., Krishnasamy, V., & Kandasamy, N. K. (2018). Optimal sizing of wind–PV-based DC microgrid for telecom power supply in remote areas. IET Renewable Power Generation, 12(7), 859-866.‏

Ma, T., & Javed, M. S. (2019). Integrated sizing of hybrid PV-wind-battery system for remote island considering the saturation of each renewable energy resource. Energy Conversion and Management, 182, 178-190.‏

Singh, G., Baredar, P., Singh, A., & Kurup, D. (2017). Optimal sizing and location of PV, wind and battery storage for electrification to an island: A case study of Kavaratti, Lakshadweep. Journal of Energy Storage, 12, 78-86.‏

Duchaud, J. L., Notton, G., Darras, C., & Voyant, C. (2019). Multi-Objective Particle Swarm optimal sizing of a renewable hybrid power plant with storage. Renewable Energy, 131, 1156-1167.‏

Belfkira, R., Zhang, L., & Barakat, G. (2011). Optimal sizing study of hybrid wind/PV/diesel power generation unit. Solar Energy, 85(1), 100-110.‏

Mohamed, A., & Khatib, T. (2013, February). Optimal sizing of a PV/wind/diesel hybrid energy system for Malaysia. In 2013 IEEE International Conference on Industrial Technology (ICIT) (pp. 752-757). IEEE.‏

Tu, T., Rajarathnam, G. P., & Vassallo, A. M. (2019). Optimization of a stand-alone photovoltaic–wind–diesel–battery system with multi-layered demand scheduling. Renewable energy, 131, 333-347.‏

Bilal, B. O., Sambou, V., Ndiaye, P. A., Kébé, C. M. F., & Ndongo, M. (2013). Study of the influence of load profile variation on the optimal sizing of a standalone hybrid PV/wind/battery/diesel system. Energy Procedia, 36, 1265-1275.‏

Charfi, S., Atieh, A., & Chaabene, M. (2016). Modeling and cost analysis for different PV/battery/diesel operating options driving a load in Tunisia, Jordan and KSA. Sustainable cities and society, 25, 49-56.‏

Charfi, S., Atieh, A., & Chaabene, M. (2019). Optimal sizing of a hybrid solar energy system using particle swarm optimization algorithm based on cost and pollution criteria. Environmental Progress & Sustainable Energy, 38(3), e13055.‏

Das, B. K., & Zaman, F. (2019). Performance analysis of a PV/Diesel hybrid system for a remote area in Bangladesh: Effects of dispatch strategies, batteries, and generator selection. Energy, 169, 263-276.‏

Elbaset, A. A., Suryoatmojo, H., & Hiyama, T. (2010). Genetic algorithm based optimal sizing of PV-diesel-battery system considering CO2 emission and reliability. International Journal of Innovative Computing, Information and Control ICIC International, 6(10), 4631-4649.‏

Konneh, D. A., Lotfy, M. E., Shigenobu, R., & Senjyu, T. (2018). Optimal Sizing of Grid-connected Renewable Energy System in Freetown Sierra Leone. IFAC-PapersOnLine, 51(28), 191-196.‏

Alsayed, M., Cacciato, M., Scarcella, G., & Scelba, G. (2013). Multicriteria optimal sizing of photovoltaic-wind turbine grid connected systems. IEEE Transactions on energy conversion, 28(2), 370-379.‏

González, A., Riba, J. R., Rius, A., & Puig, R. (2015). Optimal sizing of a hybrid grid-connected photovoltaic and wind power system. Applied Energy, 154, 752-762.‏

González, A., Riba, J. R., & Rius, A. (2015). Optimal sizing of a hybrid grid-connected photovoltaic–wind–biomass power system. Sustainability, 7(9), 12787-12806.‏

Li, J. (2019). Optimal sizing of grid-connected photovoltaic battery systems for residential houses in Australia. Renewable energy, 136, 1245-1254.‏

Boussetta, M., Elbachtiri, R., Elhammoumi, K., & Khanfara, M. (2016). Optimal sizing of grid-connected PV-Wind system case study: Agricultural farm in Morocco. Journal of Theoretical and Applied Information Technology, 86(2), 196.‏

Khanfara, M., El Bachtiri, R., Boussetta, M., & El Hammoumi, K. (2018, June). Economic Sizing of a Grid-Connected Photovoltaic System: Case of GISER research project in Morocco. In IOP Conference Series: Earth and Environmental Science (Vol. 161, No. 1, p. 012006). IOP Publishing.‏

Sediqi, M. M., Furukakoi, M., Lotfy, M. E., Yona, A., & Senjyu, T. (2017). Optimal economical sizing of grid-connected hybrid renewable energy system. Journal of Energy and Power Engineering, 11(4), 244-53.‏

Ghaemi, S., & Moghaddas-Tafreshi, S. M. (2007). Optimal sizing of grid-connected hybrid power system in qeshm island in persian golf of Iran. Vienna-Austria: IEWT.‏

Singh, S., & Kaushik, S. C. (2016). Optimal sizing of grid integrated hybrid PV-biomass energy system using artificial bee colony algorithm. IET Renewable Power Generation, 10(5), 642-650.‏

Gharibi, M., & Askarzadeh, A. (2019). Size and power exchange optimization of a grid-connected diesel generator-photovoltaic-fuel cell hybrid energy system considering reliability, cost and renewability. International Journal of Hydrogen Energy, 44(47), 25428-25441.‏

Ghenai, C., & Bettayeb, M. (2019). Grid-tied solar PV/fuel cell hybrid power system for university building. Energy Procedia, 159, 96-103.‏

Ramli, M. A., Hiendro, A., Sedraoui, K., & Twaha, S. (2015). Optimal sizing of grid-connected photovoltaic energy system in Saudi Arabia. Renewable Energy, 75, 489-495.‏

Shayeghi, H., Asefi, S., Shahryari, E., & Dadkhah, R. (2018). Optimal management of renewable energy sources considering split-diesel and dump energy. International Journal on Technical and Physical Problems of Engineering (IJTPE), 10(1), 34-40.‏

Ogunjuyigbe, A. S. O., Ayodele, T. R., & Akinola, O. A. (2016). Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building. Applied Energy, 171, 153-171.‏

Mohammed AQ, Al-Anbarri K, Hannun RM. Using particle swarm optimization to find optimal sizing of PV-BS and diesel generator. J Eng Sustain Dev., 2022, 25:51–59. https://doi.org/10.31272/jeasd.25.3.6.

Mohammed AQ, Al-Anbarri KA, Hannun RM (2020) Introducing newly developed Nomadic People Optimizer (NPO) algorithm to find optimal sizing of a hybrid renewable energy. In: IOP conference series: materials science and engineering. IOP Publishing

Javed, M. S., & Ma, T. (2019). Techno-economic assessment of a hybrid solar-wind-battery system with genetic algorithm. Energy Procedia, 158, 6384-6392.‏

Lu, J., Wang, W., Zhang, Y., & Cheng, S. (2017). Multi-objective optimal design of stand-alone hybrid energy system using entropy weight method based on HOMER. Energies, 10(10), 1664.‏

Fathy, A., Kaaniche, K., & Alanazi, T. M. (2020). Recent Approach Based Social Spider Optimizer for Optimal Sizing of Hybrid PV/Wind/Battery/Diesel Integrated Microgrid in Aljouf Region. IEEE Access, 8, 57630-57645.‏

Diaf, S., Notton, G., Belhamel, M., Haddadi, M., & Louche, A. (2008). Design and techno-economical optimization for hybrid PV/wind system under various meteorological conditions. Applied Energy, 85(10), 968-987.‏

Ahmed Z. Abass, Faisal T. Abed, and Julian Gaidukov, Economic Feasibility Study of a Hybrid Power Station Between Solar Panels and Wind Turbine with The National Grid in Al- Hayy City in the Central of Iraq. IOP Conf. Series: Materials Science and Engineering, 2021. 1184(012001).

Khazaal, H.F., et al., Water desalination and purification using desalination units powered by solar panels. Periodicals of Engineering and Natural Sciences, 2019. 7(3): p. 1373-1382.

Abed, F.T., and I.A. Ibrahim. Efficient Energy of Smart Grid Education Models for Modern Electric Power System Engineering in Iraq. in IOP Conference Series: Materials Science and Engineering. 2020. IOP Publishing.

Sultan, T.N., M.S. Farhan. Using Cooling System for Increasing the Efficiency of Solar Cell. in Journal of Physics: Conference Series. 2021. IOP Publishing.

Ismael, A.-K.A.O., et al., Eliminate the Migration of Farmers to Cities by Supporting Renewable Energy Projects.

Mansour Farhan, Dawood Salman Hasan. Impact of Temperature and Dust Deposition on PV Panel Performance. in AIP conference proceedings. 2021. AIP Publishing LLC.

Zamzeer, A.S., and M.S. Farhan, Fault Detection System of Photovoltaic Based on Artificial Neural Network. Wasit Journal of Engineering Sciences, 2023. 11(1): p. 93-104.

Hasan, D.S. and M.S. Farhan, Impact of Cloud, Rain, Humidity, and Wind Velocity on PV Panel Performance. Wasit Journal of Engineering Sciences, 2022. 10(2): p. 34-43.

Zamzeer, A.S., and M.S. Farhan. An Investigation into Faults of PV system using Machine Learning: A Systematic Review. in 2023 Third International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT). 2023. IEEE.

Mansour Farhan, Teba Nassir Sultan. Investigation The Factors Affecting on The Performance of PV System. in AIP conference proceedings. 2021. AIP Publishing LLC.

Yang, H., Wei, Z., & Chengzhi, L. (2009). Optimal design and techno-economic analysis of a hybrid solar–wind power generation system. Applied Energy, 86(2), 163-169.‏

Luna-Rubio, R., Trejo-Perea, M., Vargas-Vázquez, D., & Ríos-Moreno, G. J. (2012). Optimal sizing of renewable hybrids energy systems: A review of methodologies. Solar energy, 86(4), 1077-1088.‏

Belouda, M., Oueslati, H., Mabrouk, S. B., & Mami, A. (2019). Optimal design and sensitivity analysis of a PV-WT-hydraulic storage system generation in a remote area in Tunisia. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-15.‏

Javed, M. S., Song, A., & Ma, T. (2019). Techno-economic assessment of a stand-alone hybrid solar-wind-battery system for a remote island using genetic algorithm. Energy, 176, 704-717

Downloads

Published

2024-12-01

Issue

Section

Electrical Engineering

How to Cite

Q.MOHAMMED, A., Kassim A. Al-Anbarri, & Ihsan Mousa Jawad. (2024). Metaheuristic Algorithm to Find Optimal Sizing of Stand-Alone Hybrid Energy System in Remote Areas: A review. Wasit Journal of Engineering Sciences, 12(4), 146-162. https://doi.org/10.31185/ejuow.Vol12.Iss4.600