IOT System for Detecting Epileptic Seizures Based on Fuzzy Logic

Authors

  • Jehan A. abbas Department of Electrical Engineering, College of Engineering, University of Wasit, Wasit, Iraq.
  • Manaf K. Hussein Department of Electrical Engineering, College of Engineering, University of Wasit, Wasit, Iraq
  • Riyadh A. Abbas Department of Electrical Engineering, College of Engineering, University of Wasit, Wasit, Iraq

DOI:

https://doi.org/10.31185/wjes.Vol13.Iss2.587

Keywords:

Internet of Things (IoT) Epilepsy; Epileptic seizure detection; Fuzzy logic inference; wearable device.

Abstract

Epilepsy affects around 50 million people globally and is marked by unpredictable seizures due to abnormal neural activities in the brain. With nearly 30% of epilepsy patients experiencing drug-resistant seizures, there is a crucial need for effective seizure detection. This paper focuses on the challenge of predicting seizures to enable preventive actions. To achieve this the proposed system utilizes the STM32F103C8T6 microcontroller to process data from a 3-axis accelerometer, heart rate sensor and temperature sensor. The collected data is analysed using a fuzzy logic algorithm in MATLAB to interpret sensor readings for identifying seizures. When a possible seizure is detected, notifications are sent through GSM along with the patient’s location provided by GPS. Additionally, the system explores seizure detection methods device’s role in health monitoring and IoT integration in healthcare, with an accuracy rate of 94%. This work contributes to the field of healthcare technology by offering an innovative solution for continuous and automated monitoring of epilepsy patients, ultimately aiming to improve patient safety and quality of life.

References

[1] S. Hassan, E. Mwangi, and P. K. Kihato, “IoT based monitoring system for epileptic patients,” Heliyon, vol. 8, no. 6, Jun. 2022, doi: https://doi.org/10.2139/ssrn.3977513.

[2] P. Wal, A. Wal, N. Verma, R. Karunakakaran, and A. Kapoor, “Internet of Medical Things – The Future of Healthcare,” Open Public Health J, vol. 15, no. 1, Dec. 2022, doi: https://doi.org/10.21275/sr23726161859.

[3] T. Tamura, Y. Maeda, M. Sekine, and M. Yoshida, “Wearable Photoplethysmographic Sensors—Past and Present,” Electronics 2014, Vol. 3, Pages 282-302, vol. 3, no. 2, pp. 282–302, Apr. 2014, doi: https://doi.org/10.3390/electronics3020282.

[4] V. Teohari, C. Ungureanu, … V. B.-C., and undefined 2014, “Epilepsy seizure detection app for wearable technologies,” researchgate.netVM Teohari, C Ungureanu, V Bui, J Arends, RM AartsConference Proceedings AmI, 2014•researchgate.net, doi: https://doi.org/10.15760/honors.1523.

[5] A. Mishra, A. Kumari, P. Sajit, P. P.- Development, and undefined 2018, “Remote web based ECG Monitoring using MQTT Protocol for IoT in Healthcare,” researchgate.netA Mishra, A Kumari, P Sajit, P PandeyDevelopment, 2018•researchgate.net, vol. 5, 2018, doi: https://doi.org/10.1109/actea.2019.8851094.

[6] H. Yamamoto, A. Okumura, and M. Fukuda, “Epilepsies and epileptic syndromes starting in the neonatal period,” Brain Dev, vol. 33, no. 3, pp. 213–220, Mar. 2011, doi: https://doi.org/10.1016/j.braindev.2010.10.009.

[7] C. Baumgartner, J. Koren, M. Britto-Arias, S. Schmidt, and S. Pirker, “Epidemiology and pathophysiology of autonomic seizures: a systematic review,” Clinical Autonomic Research, vol. 29, no. 2, pp. 137–150, Apr. 2019, doi: https://doi.org/10.1007/s10286-019-00596-x.

[8] J. Munch Nielsen, I. C. Zibrandtsen, P. Masulli, T. Lykke Sørensen, T. S. Andersen, and T. Wesenberg Kjær, “Towards a wearable multi-modal seizure detection system in epilepsy: A pilot study,” Clinical Neurophysiology, vol. 136, pp. 40–48, Apr. 2022, doi: https://doi.org/10.1016/j.clinph.2022.01.005.

[9] Y. Lamrani, A. Jahani, L. Gagliano, D. K. Nguyen, and E. Bou Assi, “Evaluation of Commercially Available Seizure Detection Wearables in Canada: Current Evidence,” Canadian Journal of Neurological Sciences, 2024, doi: https://doi.org/10.1017/cjn.2024.58.

[10] L. Leon, N. Contreras, F. Polanco, E. Fentry, S. Sajal, and I. Parvez, “A Skin Sensor for Epileptic Seizure Detection and Notification Applications,” in SoutheastCon 2023, IEEE, Apr. 2023, pp. 118–125. doi: https://doi.org/10.1109/southeastcon51012.2023.10114958.

[11] M. Habtamu et al., “A novel wearable device for automated real-time detection of epileptic seizures,” BMC Biomed Eng, vol. 5, no. 1, Jul. 2023, doi: https://doi.org/10.1186/s42490-023-00073-7.

[12] W. Li, G. Wang, X. Lei, D. Sheng, T. Yu, and G. Wang, “Seizure detection based on wearable devices: A review of device, mechanism, and algorithm,” Acta Neurol Scand, vol. 146, no. 6, pp. 723–731, Dec. 2022, doi: https://doi.org/10.1111/ane.13716/v1/decision1.

[13] T. Yamakawa et al., “Wearable epileptic seizure prediction system with machine-learning-based anomaly detection of heart rate variability,” Sensors (Switzerland), vol. 20, no. 14, pp. 1–16, Jul. 2020, doi: https://doi.org/10.3390/s20143987.

[14] G. Regalia, F. Onorati, M. Lai, C. Caborni, and R. W. Picard, “Multimodal wrist-worn devices for seizure detection and advancing research: Focus on the Empatica wristbands,” Jul. 01, 2019, Elsevier B.V. doi: https://doi.org/10.1016/j.eplepsyres.2019.02.007.

[15] N. Zamani-Siahkali et al., “SPECT/CT, PET/CT, and PET/MRI for Response Assessment of Bone Metastases,” May 01, 2024, W.B. Saunders. doi: https://doi.org/10.1053/j.semnuclmed.2023.11.005.

[16] T. J. von Oertzen, G. Gröppel, S. Katletz, M. Weiß, M. Sonnberger, and R. Pichler, “SPECT and PET in nonlesional epilepsy,” May 01, 2023, Springer Medizin. doi: https://doi.org/10.5698/1535-7597-14.3.121.

[17] G. Muhammad, F. Alshehri, F. Karray, A. El Saddik, M. Alsulaiman, and T. H. Falk, “A comprehensive survey on multimodal medical signals fusion for smart healthcare systems,” Information Fusion, vol. 76, pp. 355–375, Dec. 2021, doi: https://doi.org/10.1016/j.inffus.2021.06.007.

[18] K. Xu, Y. Lu, and K. Takei, “Multifunctional Skin-Inspired Flexible Sensor Systems for Wearable Electronics,” Adv Mater Technol, vol. 4, no. 3, p. 1800628, Mar. 2019, doi: https://doi.org/10.1002/admt.201800628.

[19] S. Beniczky et al., “Automated seizure detection using wearable devices: A clinical practice guideline of the International League Against Epilepsy and the International Federation of Clinical Neurophysiology,” Epilepsia, vol. 62, no. 3, pp. 632–646, Mar. 2021, doi: https://doi.org/10.1016/j.clinph.2020.12.009.

[20] O. Gharbi et al., “Detection of focal to bilateral tonic–clonic seizures using a connected shirt,” Epilepsia, 2024, doi: https://doi.org/10.1111/epi.18021.

[21] D. Zambrana-Vinaroz, J. M. Vicente-Samper, J. Manrique-Cordoba, and J. M. Sabater-Navarro, “Wearable Epileptic Seizure Prediction System Based on Machine Learning Techniques Using ECG, PPG and EEG Signals,” Sensors, vol. 22, no. 23, Dec. 2022, doi: https://doi.org/10.3390/s22239372.

[22] J. Verdru and W. Van Paesschen, “Wearable seizure detection devices in refractory epilepsy,” Dec. 01, 2020, Springer Science and Business Media Deutschland GmbH. doi: https://doi.org/10.1007/s13760-020-01417-z.

[23] T. Fair and A. A. Pollen, “Genetic architecture of human brain evolution,” Jun. 01, 2023, Elsevier Ltd. doi: https://doi.org/10.1016/j.conb.2023.102710.

[24] T. Traub-Weidinger et al., “EANM practice guidelines for an appropriate use of PET and SPECT for patients with epilepsy,” Eur J Nucl Med Mol Imaging, 2024, doi: https://doi.org/10.1007/978-3-031-51633-7_10.

[25] R. Sankowski et al., “Multiomic spatial landscape of innate immune cells at human central nervous system borders,” Nat Med, vol. 30, no. 1, pp. 186–198, Jan. 2024, doi: https://doi.org/10.1038/s41591-023-02673-1.

[26] C. Harden et al., “Practice guideline summary: Sudden unexpected death in epilepsy incidence rates and risk factors: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology and the American Epilepsy Society,” Neurology, vol. 88, no. 17, pp. 1674–1680, Apr. 2017, doi: https://doi.org/10.1212/wnl.0000000000004663.

[27] J. Sheng, S. Liu, H. Qin, B. Li, and X. Zhang, “Drug-Resistant Epilepsy and Surgery,” Curr Neuropharmacol, vol. 16, no. 1, Jun. 2018, doi: https://doi.org/10.1016/j.eplepsyres.2003.10.001.

[28] R. Kumar, M. R.-2016 I. C. on, and undefined 2016, “An IoT based patient monitoring system using raspberry Pi,” ieeexplore.ieee.orgR Kumar, MP Rajasekaran2016 International Conference on Computing Technologies and, 2016•ieeexplore.ieee.org, doi: https://doi.org/10.1109/icctide.2016.7725378.

[29] M. M. Islam, S. Nooruddin, F. Karray, and G. Muhammad, “Multi-level feature fusion for multimodal human activity recognition in Internet of Healthcare Things,” Information Fusion, vol. 94, pp. 17–31, Jun. 2023, doi: https://doi.org/10.1016/j.inffus.2023.01.015.

[30] F. Firouzi et al., “Fusion of IoT, AI, Edge-Fog-Cloud, and Blockchain: Challenges, Solutions, and a Case Study in Healthcare and Medicine,” IEEE Internet Things J, vol. 10, no. 5, pp. 3686–3705, Mar. 2023, doi: https://doi.org/10.1109/jiot.2022.3191881.

[31] Pritika, B. Shanmugam, and S. Azam, “Risk Assessment of Heterogeneous IoMT Devices: A Review,” Technologies 2023, Vol. 11, Page 31, vol. 11, no. 1, p. 31, Feb. 2023, doi: 10.3390/TECHNOLOGIES11010031.

[32] G. Becq, S. Bonnet, L. Minotti, M. Antonakios, R. Guillemaud, and P. Kahane, “Classification of epileptic motor manifestations using inertial and magnetic sensors,” Comput Biol Med, vol. 41, no. 1, pp. 46–55, Jan. 2011, doi: https://doi.org/10.1016/j.compbiomed.2010.11.005.

[33] D. Cogan, M. Nourani, J. Harvey, and V. Nagaraddi, “Epileptic seizure detection using wristworn biosensors,” Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, vol. 2015-November, pp. 5086–5089, Nov. 2015, doi: https://doi.org/10.1109/embc.2015.7319535.

[34] P. Jallon, “A Bayesian approach for epileptic seizures detection with 3D accelerometers sensors,” 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC’10, pp. 6325–6328, 2010, doi: https://doi.org/10.1109/iembs.2010.5627636.

[35] F. Masse, M. Van Bussel, A. Serteyn, J. Arends, and J. Penders, “Miniaturized wireless ECG monitor for real-time detection of epileptic seizures,” Transactions on Embedded Computing Systems, vol. 12, no. 4, Jun. 2013, doi: https://doi.org/10.1145/1921081.1921095.

[36] M. Milošević, A. Van de Vel, … B. B.-I. journal of, and undefined 2015, “Automated detection of tonic–clonic seizures using 3-d accelerometry and surface electromyography in pediatric patients,” ieeexplore.ieee.orgM Milošević, A Van de Vel, B Bonroy, B Ceulemans, L Lagae, B Vanrumste, S Van HuffelIEEE journal of biomedical and health informatics, 2015•ieeexplore.ieee.org, doi: https://doi.org/10.1109/jbhi.2015.2462079.

[37] P. Meritam, P. Ryvlin, and S. Beniczky, “User-based evaluation of applicability and usability of a wearable accelerometer device for detecting bilateral tonic-clonic seizures: A field study,” Epilepsia, vol. 59 Suppl 1, pp. 48–52, Jun. 2018, doi: https://doi.org/10.1111/epi.14051.

[38] C. Carlson, V. Arnedo, M. Cahill, and O. Devinsky, “Detecting nocturnal convulsions: Efficacy of the MP5 monitor,” Seizure, vol. 18, no. 3, pp. 225–227, Apr. 2009, doi: https://doi.org/10.1016/j.seizure.2008.08.007.

[39] S. N. Larsen, I. Conradsen, S. Beniczky, and H. B. D. Sorensen, “Detection of tonic epileptic seizures based on surface electromyography,” 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014, pp. 942–945, Nov. 2014, doi: https://doi.org/10.1109/embc.2014.6943747.

[40] J. Lockman, R. S. Fisher, and D. M. Olson, “Detection of seizure-like movements using a wrist accelerometer,” Epilepsy & Behavior, vol. 20, no. 4, pp. 638–641, Apr. 2011, doi: https://doi.org/10.1016/j.yebeh.2011.01.019.

[41] A. P. Narechania, I. I. Garić, I. Sen-Gupta, M. P. Macken, E. E. Gerard, and S. U. Schuele, “Assessment of a quasi-piezoelectric mattress monitor as a detection system for generalized convulsions,” Epilepsy & Behavior, vol. 28, no. 2, pp. 172–176, Aug. 2013, doi: https://doi.org/10.1016/j.yebeh.2013.04.017.

[42] A. L. Patterson et al., “SmartWatch by SmartMonitor: Assessment of Seizure Detection Efficacy for Various Seizure Types in Children, a Large Prospective Single-Center Study,” Pediatr Neurol, vol. 53, no. 4, pp. 309–311, Oct. 2015, doi: https://doi.org/10.1016/j.pediatrneurol.2015.07.002.

Downloads

Published

2025-06-01

Issue

Section

Electrical Engineering

How to Cite

Jehan A. abbas, Manaf K. Hussei, & Riyadh A. Abbas. (2025). IOT System for Detecting Epileptic Seizures Based on Fuzzy Logic. Wasit Journal of Engineering Sciences, 13(2), 78-90. https://doi.org/10.31185/wjes.Vol13.Iss2.587