A Review of mm-wave Antenna Design at 60 GHz for 5G Applications System
DOI:
https://doi.org/10.31185/ejuow.Vol12.Iss1.538Keywords:
mm wave, microstrip patch antenna (MPA) design, fifth-generation applications.Abstract
The rapid advancement of mobile technology is closely tied to developments in electronic circuit designs and computer science. As a result, it is important to monitor the progress of antenna systems, which form the foundation of wireless technology. Microstrip patch antennas have emerged as a leading design in modern communication methods due to their small size, low cost, and ease of manufacturing. Over the past 40 years, numerous studies have been conducted on antenna systems, and this review article provides a comprehensive overview of the earlier and more recent achievements in microstrip patch antennas in the 60 GHz band, which is a crucial frequency range for fifth-generation (5G) technologies. This article discusses mm-wave antennas operating at 60 GHz and provides brief descriptions of their properties, construction techniques, and some related difficulties.
References
H. Huang, “Evolution of millimeter-wave antenna solutions and designs to Ccellular Phones,” IEEE Access., vol. 8, pp. 187615-187622, 2020, doi: 10.1109/ACCESS.2020.3027424.
A. Benjebbour, K. Saito, Y. Saito, and Y. Kishiyama, “5G radio access technology, ” NTT Docomo Technical Journal, vol. 17, pp. 16-28, 2016.
N. Cardona, L.M. Correia, and D. Calabuig, “Key enabling technologies for 5G: millimeter-wave and massive MIMO,” International Journal of Wireless Information Networks, vol. 24, pp. 201–203, 2017, doi:10.1007/s10776-017-0366-z.
W. An, X. Zhang, X. Luo, Y. Wang, J. and L. Xiong, “60-GHz Double-layer transmitarray antenna using complementary structure,” Frontiers in Physics, vol. 10, p. 883686, 2022, doi:10.3389/fphy.2022.883686
A. Mohammed, S. Kamal, M. Bin Ain, F. Najmi, Z. Ahmad, Z. Zahar, R. Hussin, I. Zubir, and M. Rahman, M. “Improving the gain performance of air substrate patch antenna array using the effect of conductive material thickness study for 5G applications,” Journal of Physics: Conference Series, vol. 1529, p. 052020, 2020, doi: 10.1088/1742-6596/1529/5/052020.
S.R. Thummaluru, R. Kumar, and R.K. Chaudhary, “Isolation and frequency reconfigurable compact MIMO antenna for wireless local area network applications,” IET Microw; Antennas and Propagation, vol. 13, pp. 519–525, 2019, doi: 10.1049/iet-map.2018.5895.
M. Abirami, “A review of patch antenna design for 5G,” In Proceedings of the 2017 IEEE International Conference on Electrical, Instrumentation and Communication Engineering (ICEICE), pp. 1–3, 2017, doi: 10.1109/ICEICE.2017.8191842.
T. Tomura, T. Hirayama, and H. Hirokawa, “A PCB-Integratable metal cap slot antenna for 60-GHz band mobile terminals,” IEICE Transactions on Communications, vol. 102, No. 2, pp. 317-323, 2018, doi: 10.1587/transcom.2018EBP3070.
J. Spurek, and Z. Raida, “SIW-based circularly polarized antenna array for 60 GHz 5G band: feasibility study,” Sensors, vol. 22, No. 8, p. 2945, 2022, doi: 10.3390/s22082945
A. Bondarik, and D. Sjoberg , "Gridded Parasitic Patch Stacked Microstrip Antenna with Beam Shift Capability for 60 GHz Band," Progress In Electromagnetics Research B, Vol. 62, pp. 319-331, 2015.
W. E. McKinzie, D. M. Nair, B. A. Thrasher, M. A. Smith, E. D. Hughes and J. M. Parisi, "60-GHz 2 x 2 LTCC patch antenna array with an integrated EBG structure for gain enhancement," IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1522-1525, 2016, doi: 10.1109/LAWP.2016.2517141.
R. Ullah et al., "Wideband and high gain array antenna for 5G smart phone applications using frequency selective surface," in IEEE Access, vol. 10, pp. 86117-86126, 2022, doi: 10.1109/ACCESS.2022.3196687
M. J. Al-Hasan, T. A. Denidni and A. R. Sebak, "A new UC-EBG based-dielectric resonator antenna for millimeter-wave applications," IEEE International Symposium on Antennas and Propagation, vol. 2011, pp. 1274-1276, 2011, doi: 10.1109/APS.2011.5996520.
G. K. Palikaras, A. P. Feresidis, and C. G. Parini, “Advances in conformal metamaterial antennas using high impedance (HIS) and electromagnetic bandgap (EBG) surfaces,” Antennas and Propagation (EUCAP) Proceedings of the 5th European Conference, pp. 3466 – 3469, 2011.
U. Sana, U. Sadiq & K. Shahbaz, “Design and analysis of a 60 GHZ millimeter wave antenna,” Jurnal Teknologi, vol. 78, pp. 63-68, 2016.
M. Khan, K. Islam, N. Shovon, M. Baz, and M. Masud, "Design of a novel 60 GHz millimeter wave Q-slot antenna for body-centric communications," International Journal of Antennas and Propagation, vol. 2021, pp. 1-12, 2021, doi: 10.1155/2021/9795959.
M. H. Sharaf, A.I. Zaki, R. K. Hamad, and M. M. Omar, “A novel dual-band (38/60 GHz) patch antenna for 5G mobile handsets.," Sensors, vol. 20, pp. 1-19, 2020.
S. Ullah, WH. Yeo, H. Kim, et al. “Development of 60-GHz millimeter wave, electromagnetic bandgap ground planes for multiple-input multiple-output antenna applications,” Sci Rep 10, 8541, 2020, doi: 10.3390/s20092541.
Y. I. Al-Yasir, H. A. Al-Behadili, B. A. Sawadi, N. O. Parchin, A. M. Abdulkhaleq, A. S. , Abdullah, and R. A. Abd-Alhameed, “New radiation pattern-reconfigurable 60-GHz antenna for 5G communications,” Chapter New Radiation Pattern-Reconfigurable 60-GHz Antenna for 5G Communications. 2019.
T. Elkarkraoui, G. Y. Delisle, and N. Hakem, “60 GHz polarization reconfigurable DRA antenna,” Open Journal of Antennas and Propagation, vol. 4, pp. 176-189, 2016, doi: 10.4236/ojapr.2016.44014.
K. Issa H. Fathallah, MA. Ashraf, H. Vettikalladi, S. Alshebeili, “Broadband high-gain antenna for millimetre-wave 60-GHz band," Electronics, vol. 8, p. 1246, 2019, doi: 10.3390/electronics8111246.
M. Hussain, S. M. Rizvi, A. Abbas, A. Nadeem, I. Alam and A. Iftikhar, "A wideband antenna for V-band applications in 5G communications," 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST), pp. 1017-1019, 2021, doi: 10.1109/IBCAST51254.2021.9393018.
S.R Thummaluru, R. Kumar, RK Chaudhary, “Isolation and frequency reconfigurable compact MIMO antenna for wireless local area network applications,” IET Microwaves, Antennas Propagation,vol. 13, pp. 519–525, 2019, doi: 10.1049/iet-map.2018.5895.
M. Abirami, “A review of patch antenna design for 5G,” In Proceedings of the 2017 IEEE International Conference on Electrical, Instrumentation and Communication Engineering (ICEICE), pp. 1–3, 2017.
M. Hussain, S. Jarchavi, S. Naqvi U. Gulzar S. Khan, M. Alibakhshikenari and I. Huynen, “Design and fabrication of a printed tri-band antenna for 5G applications operating across Ka-, and V-band spectrums,” Electronics, 10, pp 1-10, 2021, doi.org/10.3390/electronics10212674.
S. Liao, P. Chen, P. Wu, K. M. Shum, and Q. Xue, “Substrate-integrated waveguide-based 60-GHz resonant slotted waveguide arrays with wide impedance bandwidth and high gain,” IEEE Transactions on Antennas and Propagation, vol. 63,pp. 2922-2931, 2015, doi: 10.1109/TAP.2015.2423696.
G. Zhang, S. Pu, X. Xu, Y. Liu, and C. Wang, “Design of 60-GHz microstrip antenna array composed through circular contour feeding line,” 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), vol. 01, pp. 1010-1013, 2016, 10.1109/APEMC.2016.7522931.
I. Fitri, and T. A. Akbar, “A new gridded parasitic patch stacked microstrip antenna for enhanced wide bandwidth in 60 GHz band,” 2017 International Conference on Broadband Communication, Wireless Sensors and Powering (BCWSP), pp. 1-4. 2017, doi: 10.1109/BCWSP.2017.8272571.
A. Bondarik, and D. Sjöberg, "Pattern reconfigurable wideband stacked microstrip patch antenna for 60 GHz band,” International Journal of Antennas and Propagation, vol. 2016, pp. 1-11, 2016, https://doi.org/10.1155/2016/5961309.
A. Firdausi, G. Hakim, and M. Alaydrus, “Designing a tri-band microstrip antenna for targetting 5G broadband communications. MATEC Web of Conference EDP Sci 218, pp. 03015, 2018, doi: 10.1051/matecconf/201821803015.
A. Martin, O. Lafond, M. Himdi, and X. Castel, “ Improvement of 60 GHz transparent patch antenna array performance through specific double-sided micrometric Mesh Metal Technology,” IEEE Access, vol. 7, pp 2256-2262, 2019.10.1109/ACCESS.2018.2886478.
E. Hussein, and N. Qasem, “Design and optimization of rectangular microstrip patch array antenna using frequency selective surfaces for 60 GHz,” International Journal of Applied Engineering Research. Vol. 11. pp. 4679-4687, 2016.
T. S. Mneesy, R. K. Hamad, A. I. Zaki, and W. A. E. Ali, “A novel high gain monopole antenna array for 60 GHz millimeter-wave communications. Applied Science, vol. 10, p. 4546. 2020, doi: 10.3390/app10134546.
M. Saeed, “Design and simulation of rectangular microstrip patch antennas (45 GHz and 60 GHz) for V-band applications,” Passer Journal, vol. 4, pp. 100-104, 2022, doi: 10.24271/psr.2022.333252.1124.
N. Wang, and G. Peng , "A 60 GHz End-fire high-gain tapered slot antenna with side-lobe suppression," Progress In Electromagnetics Research Letters, vol. 55, pp. 145-151, 2015, doi: 10.2528/PIERL15070702.
M. Hussain, S. Naqvi, W. Awan, W. Ali, E. Ali, S. Khan, and M. Alibakhshikenari, (2021). “Simple Wideband Extended Aperture Antenna-Inspired Circular Patch for V-band Communication Systems,” AEU - International Journal of Electronics and Communications, vol. 144, p. 154061, 2022, doi: 10.1016/j.aeue.2021.154061.
M. Rabbani, and H. Ghafouri-Shiraz, “Improvement of microstrip patch antenna and bandwidth at 60GHz and X bands for wireless applications,” IET Microwaves, Antennas and Propagation, vol. 10, no. 11, pp. 1167-1173, 2016, doi: 10.1049/iet-map.2015.0672.
M. Noha, M. Rashad, W. Swelam, M. H. Abd El Azeem, “Pharaonic Ankh-Key millimeter wave broadband antenna design and fabrication for 5G applications,” IEEE Transaction on Antenna and Propagation, vol. 8, pp. 341-452, 2017, doi: 10.1109/APUSNCURSINRSM.2017.8073336.
J. Saini, and S. K. Agarwal “Design a single band microstrip patch antenna at 60 GHz mllimeter wave for 5G application”, International Conference on Computer, Communications and Electronics (Comptelix), pp. 227-230, 2017, doi: 10.1109/COMPTELIX.2017.8003969.
T. Jang and C. S. Park, "60-GHz Wideband L-Probe Circular Slotted E-Shaped Patch Antenna Array," in IEEE Access, vol. 10, pp. 79939-79947, 2022, doi: 10.1109/ACCESS.2022.3194708.
T. Elkarkraoui, G. Y. Delisle, and N. Hakem, “60 GHz polarization reconfigurable DRA antenna,” Open Journal of Antennas and Propagation, vol. 4, pp. 176-189, 2016, doi: 10.4236/ojapr.2016.44014.
N. Mungaru, and T. Shanmuganantham, “Back to Back Pi-Shaped Slot with SIW Cavity-Backed Antenna for 60 GHz Applications,” International Journal of Microwave and Optical Technology, vol. 14, pp. 402-408, 2019.
F. Ahmad, and B. Tlili, “Design and analysis of millimeter wave double F slot patch antenna for future 5G wireless communication,” International Conference on Electrical and Computing Technologies and Applications (ICECTA), pp. 1-4, 2017, doi: 10.1109/ICECTA.2017.8252049.
J. Saini and S. K. Agarwal, "Design a single band microstrip patch antenna at 60 GHz millimeter wave for 5G application," International Conference on Computer, Communications and Electronics, vol. 2017, pp. 227-230, 2017, doi: 10.1109/COMPTELIX.2017.8003969
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Wasit Journal of Engineering Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.