Steel Fiber Role-Impact Recent Literature on Steel Fiber Role in Resistance Improvement of Fibrous Concrete to Repeated Impacts
DOI:
https://doi.org/10.31185/ejuow.Vol11.Iss1.416Keywords:
steel fiber, repeated impact, ACI 544-2R, fibrous concrete, cracking, fiber lengthAbstract
Concrete is a brittle material when subjected to design and accidental impact loads, which are expected along the life span of the structure. To improve the impact performance of concrete, steel fibers are used as short discrete material reinforcing elements. Among the available impact test, the ACI 544-2R repeated impact test is considered as the simplest and cheapest test procedure that needs no sophisticated sensors and costly techniques, which is used as a qualitative tool to evaluate the impact of fibrous concrete. This article introduces a state-of-the-art literature review of the repeated impact performance of steel fiber-reinforced concrete. Rich literature of different steel fiber-reinforced concrete types is reviewed and the effect of steel fibers on the retained cracking and failure impact numbers is highlighted. The sole effects of the geometrical parameters of steel fibers were analyzed in addition to fiber content. Based on the reviewed literature works, it can be summarized that increasing the fiber content increases the bond strength, and using longer fibers affords deeper anchorage lengths inside the cement paste across cracks, which postpone their widening and improves the impact resistance in terms of recorded cracking and failure numbers.
References
Zhang, W.; Chen, S.; Liu, Y. Effect of weight and drop height of hammer on the flexural impact performance of fiber-reinforced concrete. Construction and Building Materials 2017, 140, 31–35. DOI: https://doi.org/10.1016/j.conbuildmat.2017.02.098
Pan, Y.; Wu, C.; Cheng, X.; Li, V.C.; He, L. Impact fatigue behaviour of GFRP mesh reinforced engineered cementitious composites for runway pavement. Construction and Building Materials 2020, 230. DOI: https://doi.org/10.1016/j.conbuildmat.2019.116898
Salaimanimagudam, M.P.; Suribabu, C.R.; Murali, G.; Abid, S.R. Impact response of hammerhead pier fibrous concrete beams designed with topology optimization. Periodica Polytechnica Civil Engineering 2020, 64, 1244–1258. DOI: https://doi.org/10.3311/PPci.16664
Liu, J.; Li, J.; Fang, J.; Su, Y.; Wu, C. Ultra-high performance concrete targets against high velocity projectile impact—a-state-of-the-art review. Int. J. Impact Eng. 2022, 160, 104080. DOI: https://doi.org/10.1016/j.ijimpeng.2021.104080
Feng, J.; Gao, X.; Li, J.; Dong, H.; He, Q.; Liang, J.; Sun, W. Penetration resistance of hybrid-fiber-reinforced high-strength concrete under projectile multi-impact. Constr. Build. Mater. 2019, 202, 341–352. DOI: https://doi.org/10.1016/j.conbuildmat.2019.01.038
Abid, S.R.; Murali, G.; Ahmad, J.; Al-Ghasham, T.S.; Vatin, N.I. Repeated Drop-Weight Impact Testing of Fibrous Concrete: State-Of-The-Art Literature Review, Analysis of Results Variation and Test Improvement Suggestions. Materials 2022, 15, 3948. DOI: https://doi.org/10.3390/ma15113948
Kryžanowski, A.; Mikoš, M.; Šušteršič, J.; Ukrainczyk, V.; Planinc, I. Abrasion resistance of concrete in hydraulic structures. ACI Mater. J. 2009, 106, 349-356. DOI: https://doi.org/10.14359/56655
Zarrabi, N.; Moghim, M.N.; Eftekhar, M.R. Effect of hydraulic parameters on abrasion erosion of fiber reinforced concrete in hydraulic structures. Constr. Build. Mater. 2021, 267, 120966. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120966
Abid, S.R.; Ali, S.H.; Murai, G.; Al-Gasham, T.S. A simple suggested approach to reduce the testing time of concrete surface abrasion using ASTM C1138. Case Studies Constr. Mater. 2021, 15, e00685. DOI: https://doi.org/10.1016/j.cscm.2021.e00685
Zhang, W.; Chen, S.; Zhang, N.; Zhou, Y. Low-velocity flexural impact response of steel fiber reinforced concrete subjected to freeze-thaw cycles in NaCl solution. Construction and Building Materials 2015, 101, 522–526. DOI: https://doi.org/10.1016/j.conbuildmat.2015.09.045
ACI 544.2R-89. Measurement of Properties of Fiber Reinforced Concrete. American Concrete Institute: Farmington Hills, MI, USA, 1999.
Ashraf, M.R.; Akmal, U.; Khurram, N.; Aslam, F.; Deifalla, A.F. Impact resistance of styrene–butadiene rubber (SBR) latex‐modified fiber‐reinforced concrete: The role of aggregate size. Materials 2022, 15, 1283. DOI: https://doi.org/10.3390/ma15041283
Batran, T.Z.; Ismail, M.K.; Hassan, A.A.A. Behavior of novel hybrid lightweight concrete composites under drop-weight impact loading. Structures 2021, 34, 2789–2800. DOI: https://doi.org/10.1016/j.istruc.2021.09.046
Yılmaz, T.; Anil, Ö.; Tuğrul Erdem, R. Experimental and numerical investigation of impact behavior of RC slab with different opening size and layout. Structures 2022, 35, 818–832. DOI: https://doi.org/10.1016/j.istruc.2021.11.057
Huang, Z.; Chen, W.; Tran, T.T.; Pham, T.M.; Hao, H.; Chen, Z.; Elchalakani, M. Experimental and numerical study on concrete beams reinforced with Basalt FRP bars under static and impact loads. Compos. Struct. 2021, 263, 113648. DOI: https://doi.org/10.1016/j.compstruct.2021.113648
Yoo, D.Y.; Banthia, N. Mechanical and structural behaviors of ultra-high-performance fiber-reinforced concrete subjected to impact and blast. Constr. Build. Mater. 2017, 149, 416–431. DOI: https://doi.org/10.1016/j.conbuildmat.2017.05.136
Ziada, M.; Erdem, S.; Tammam, Y.; Kara, S.; Lezcano, R.A.G. The effect of basalt fiber on mechanical, microstructural, and high-temperature properties of fly ash-based and basalt powder waste-filled sustainable geopolymer mortar. Sustainability 2021, 13, 12610. DOI: https://doi.org/10.3390/su132212610
Lee, M.; Park, G.K.; Kim, S.W.; Kwak, H.G. Damage characteristics of high performance fiber-reinforced cement composites panels subjected to projectile impact. Int. J. Mech. Sci. 2022, 214, 106919. DOI: https://doi.org/10.1016/j.ijmecsci.2021.106919
Mina, A.L.; Petrou, M.F.; Trezos, K.G. Resistance of an optimized ultra-high performance fiber reinforced concrete to projectile impact. Buildings 2021, 11, 1–18. DOI: https://doi.org/10.3390/buildings11020063
Yu, R.; Van Beers, L.; Spiesz, P.; Brouwers, H.J.H. Impact resistance of a sustainable ultra-high performance fibre reinforced concrete (UHPFRC) under pendulum impact loadings. Constr. Build. Mater. 2016, 107, 203–215. DOI: https://doi.org/10.1016/j.conbuildmat.2015.12.157
Saleem, M.A.; Saleem, M.M.; Ahmad, Z.; Hayat, S. Predicting compressive strength of concrete using impact modulus of toughness. Case Stud. Constr. Mater. 2021, 14, e00518. DOI: https://doi.org/10.1016/j.cscm.2021.e00518
Nili, M.; Afroughsabet, V. The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete. Constr. Build. Mater. 2010, 24, 927–933. DOI: https://doi.org/10.1016/j.conbuildmat.2009.11.025
Soroushian, P.; Nagi, M.; Alhozaimy, A. Statistical variations in the mechanical properties of carbon fiber reinforced cement composites. ACI Mater. J. 1992, 89, 131–138. DOI: https://doi.org/10.14359/2198
Alavi Nia, A.; Hedayatian, M.; Nili, M.; Sabet, V.A. An experimental and numerical study on how steel and polypropylene fibers affect the impact resistance in fiber-reinforced concrete. Int. J. Impact Eng. 2012, 46, 62–73. DOI: https://doi.org/10.1016/j.ijimpeng.2012.01.009
Mastali, M.; Dalvand, A. The impact resistance and mechanical properties of self-compacting concrete reinforced with recycled CFRP pieces. Compos. Part B Eng. 2016, 92, 360–376. DOI: https://doi.org/10.1016/j.compositesb.2016.01.046
Mastali, M.; Dalvand, A.; Sattarifard, A.R. The impact resistance and mechanical properties of reinforced self-compacting concrete with recycled glass fibre reinforced polymers. J. Clean. Prod. 2016, 124, 312–324. DOI: https://doi.org/10.1016/j.jclepro.2016.02.148
Mastali, M.; Dalvand, A.; Sattarifard, A. The impact resistance and mechanical properties of the reinforced self-compacting concrete incorporating recycled CFRP fiber with different lengths and dosages. Compos. Part B Eng. 2017, 112, 74–92. DOI: https://doi.org/10.1016/j.compositesb.2016.12.029
Wang, W.; Chouw, N. The behaviour of coconut fibre reinforced concrete (CFRC) under impact loading. Constr. Build. Mater. 2017, 134, 452–461. DOI: https://doi.org/10.1016/j.conbuildmat.2016.12.092
Ali, M.A.E.M.; Soliman, A.M.; Nehdi, M.L. Hybrid-fiber reinforced engineered cementitious composite under tensile and impact loading. Mater. Des. 2017, 117, 139–149. DOI: https://doi.org/10.1016/j.matdes.2016.12.047
Fakharifar, M.; Dalvand, A.; Arezoumandi, M.; Sharbatdar, M.K.; Chen, G.; Kheyroddin, A. Mechanical properties of high performance fiber reinforced cementitious composites. Comput. Chem. Eng. 2014, 71, 510–520. DOI: https://doi.org/10.1016/j.conbuildmat.2014.08.068
Ismail, M.K.; Hassan, A.A.A.; Lachemi, M. Performance of Self-Consolidating Engineered cementitious composite under drop-weight impact loading. J. Mater. Civ. Eng. 2019, 31, 04018400. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002619
Al-Ameri, R.A.; Abid, S.R.; Murali, G.; Ali, S.H.; Özakça, M.; Vatin, N.I. Residual impact performance of ECC subjected to sub-high temperatures. Materials 2022, 15, 454. DOI: https://doi.org/10.3390/ma15020454
Al-Ameri, R.A.; Abid, S.R.; Özakça, M. Mechanical and impact properties of engineered cementitious composites reinforced with PP fibers at elevated temperatures. Fire 2022, 5, 3. DOI: https://doi.org/10.3390/fire5010003
Mohammadhosseini, H.; Alrshoudi, F.; Tahir, M.M.; Alyousef, R.; Alghamdi, H.; Alharbi, Y.R.; Alsaif, A. Performance evaluation of novel prepacked aggregate concrete reinforced with waste polypropylene fibers at elevated temperatures. Constr. Build. Mater. 2020, 259, 120418. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120418
AbdelAleem, B.H.; Ismail, M.K.; Hassan, A.A.A. The combined effect of crumb rubber and synthetic fibers on impact resistance of self-consolidating concrete. Constr. Build. Mater. 2018, 162, 816–829. https://doi.org/10.1016/j.conbuildmat.2017.12.077. DOI: https://doi.org/10.1016/j.conbuildmat.2017.12.077
Khalil, E.; Abd-Elmohsen, M.; Anwar, A.M. Impact Resistance of Rubberized Self-Compacting Concrete. Water Sci. 2015, 29, 45–53. https://doi.org/10.1016/j.wsj.2014.12.002. DOI: https://doi.org/10.1016/j.wsj.2014.12.002
Abbass, A.A.; Abid, S.R; Özakça, M. Experimental investigation on the effect of steel fibers on the flexural behavior and ductility of high-strength concrete hollow beams, Adv. Civ. Eng. 2019, 2019, Article ID 8390345. DOI: https://doi.org/10.1155/2019/8390345
Chen, G.; Gao, D.; Zhu, H.; Yuan, J.S.; Xiao, X.; Wang, W. Effects of novel multiple hooked-end steel fibres on flexural tensile behaviour of notched concrete beams with various strength grades. Structures 2021, 33,2021, 3644-3654. DOI: https://doi.org/10.1016/j.istruc.2021.06.016
Yixin, C.; Jianye, Z.; Jicheng, M.; Shunli, Z.; Yongsheng, L.; Zhixuan, Z. Tensile strength and fracture toughness of steel fiber reinforced concrete measured from small notched beams, Case Studies Constr. Mater. 2022, 17, e01401. DOI: https://doi.org/10.1016/j.cscm.2022.e01401
Algassem, O.; Li, Y.; Aoude, H. Ability of steel fibers to enhance the shear and flexural behavior of high-strength concrete beams subjected to blast loads. Eng. Struct. 2019, 199, 109611. DOI: https://doi.org/10.1016/j.engstruct.2019.109611
Larsen, I.L.; Thorstensen, R.T. The influence of steel fibres on compressive and tensile strength of ultra high performance concrete: A review. Constr. Build. Mater. 2020, 256, 119459. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119459
Li, X.; Zhang, Y.; Shi, C.; Chen, X. Experimental and numerical study on tensile strength and failure pattern of high performance steel fiber reinforced concrete under dynamic splitting tension. Constr. Build. Mater. 2020,259, 119796. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119796
Sabetifar, H.; Nematzadeh, M. An evolutionary approach for formulation of ultimate shear strength of steel fiber-reinforced concrete beams using gene expression programming. Structures 2021, 34, 4965-4976, DOI: https://doi.org/10.1016/j.istruc.2021.10.075
Yaseen, Z.M.; Tran, M.T.; Kim, S.; Bakhshpoori, T.; Deo, R.C. Shear strength prediction of steel fiber reinforced concrete beam using hybrid intelligence models: A new approach. Eng. Struct. 2018, 177, 244-255. DOI: https://doi.org/10.1016/j.engstruct.2018.09.074
Maya, L.F.; Ruiz, M.F.; Muttoni, A.; Foster, S.J. Punching shear strength of steel fibre reinforced concrete slabs. Eng. Struct. 2012, 40, 83-94. DOI: https://doi.org/10.1016/j.engstruct.2012.02.009
Arna’ot, F.H.; Abbass, A.A.; Abualtemen, A.A.; Abid, S.R.; Özakça, M. Residual strength of high strength concentric column-SFRC flat plate exposed to high temperatures, Constr. Build. Mater. 2017, 154, 204–218. DOI: https://doi.org/10.1016/j.conbuildmat.2017.07.141
Ju, M.; Ju, J-W. W.; Sim, J. A new formula of punching shear strength for fiber reinforced polymer (FRP) or steel reinforced two-way concrete slabs. Compos. Struct. 2021, 259,113471. DOI: https://doi.org/10.1016/j.compstruct.2020.113471
Liu,Y-W.; Lin, Y-Y.; Cho, S-W. Abrasion behavior of steel-fiber-reinforced concrete in hydraulic structures. Appl. Sci. 2020, 10, 5562. DOI: https://doi.org/10.3390/app10165562
Ayoob, N.S.; Abid, S.R.; Hilo, A.N. Water-impact abrasion of self-compacting concrete. Mag. Civ. Eng. 2020, 96, 60-69.
Nataraja, M.C.; Dhang, N.; Gupta, A.P. Statistical variations in impact resistance of steel fiber-reinforced concrete subjected to drop weight test. Cem. Concr. Res. 1999, 29, 989–995. DOI: https://doi.org/10.1016/S0008-8846(99)00052-6
Song, P.S.; Wu, J.C.; Hwang, S.; Sheu, B.C. Statistical analysis of impact strength and strength reliability of steel-polypropylene hybrid fiber-reinforced concrete. Constr. Build. Mater. 2005, 19, 1–9. DOI: https://doi.org/10.1016/j.conbuildmat.2004.05.002
Song, P.S.; Wu, J.C.; Hwang, S.; Sheu, B.C. Assessment of statistical variations in impact resistance of high-strength concrete and high-strength steel fiber-reinforced concrete. Cem. Concr. Res. 2005, 35, 393–399. DOI: https://doi.org/10.1016/j.cemconres.2004.07.021
Rahmani, T.; Kiani, B.; Shekarchi, M.; Safari, A. Statistical and experimental analysis on the behavior of fiber reinforced concretes subjected to drop weight test. Constr. Build. Mater. 2012, 37, 360–369. DOI: https://doi.org/10.1016/j.conbuildmat.2012.07.068
Nili, M.; Afroughsabet, V. Combined effect of silica fume and steel fibers on the impact resistance and mechanical properties of concrete. International Journal of Impact Engineering 2010, 37, 879–886. DOI: https://doi.org/10.1016/j.ijimpeng.2010.03.004
Ismail, M.K.; Hassan, A.A.A. Impact resistance and mechanical properties of self-consolidating rubberized concrete reinforced with steel fibers. J. Mater. Civ. Eng. 2017, 29, 04016193. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001731
Yildirim, S.T.; Ekinci, C.E.; Findik, F. Properties of hybrid fiber reinforced concrete under repeated impact loads. Russ. J. Nondestruct. Test. 2010, 46, 538–546. DOI: https://doi.org/10.1134/S1061830910070090
Mohammedhosseini, H.; Tahir, M.; Sam, A.R.M. The feasibility of improving impact resistance and strength properties of sustainable concrete composites by adding waste metalized plastic. Constr. Build. Mater. 2018, 169, 223-236. DOI: https://doi.org/10.1016/j.conbuildmat.2018.02.210
Abid, S.R.; Abbass, A.A.; Murali, G.; Al-Sarray, M.L.J.; Nader, I.A.; Ali, S.H. Post-high-temperature exposure repeated impact response of steel-fiber-reinforced concrete. Buildings 2022, 12, 1364. DOI: https://doi.org/10.3390/buildings12091364
Mehdipour, S.; Nikbin, I.M.; Dezhampanah, S.; Mohebbi, R.; Moghadam, H.; Charkhtab, S.; Moradi, A. Mechanical properties, durability and environmental evaluation of rubberized concrete incorporating steel fiber and metakaolin at elevated temperatures. J. Clean Prod., 2020, 254, 120126. DOI: https://doi.org/10.1016/j.jclepro.2020.120126
Abid, S.R.; Abbass, A.A.; Murali, G.; Al-Sarray, M.L.J.; Nader, I.A.; Ali, S.H. Repeated Impact Response of Normal- and High-Strength Concrete Subjected to Temperatures up to 600 oC. Materials 2022, 15, 5283. DOI: https://doi.org/10.3390/ma15155283
Al‐Ameri, R.A.; Abid, S.R.; Murali, G.; Ali, S.H.; Özakça, M. Residual repeated impact strength of concrete exposed to elevated temperatures. Crystals 2021, 11, 941. DOI: https://doi.org/10.3390/cryst11080941
Ding, Y.; Li, D.; Zhang, Y.; Azevedo, C. Experimental investigation on the composite effect of steel rebars and macro fibers on the impact behavior of high performance self-compacting concrete. Constr. Build. Mater., 2017, 136. 495-505. DOI: https://doi.org/10.1016/j.conbuildmat.2017.01.073
Chen, X.Y.; Ding, Y.N.; Azevedo, C. Combined effect of steel fibres and steel rebars on impact resistance of high performance concrete. Journal of Central South University of Technology (English Edition) 2011, 18, 1677–1684, doi:10.1007/s11771-011-0888-y. DOI: https://doi.org/10.1007/s11771-011-0888-y
Abid, S.R.; Abdul Hussein, M.L.; Ali, S.H.; Kazem, A.F. Suggested modified testing techniques to the ACI 544-R repeated drop-weight impact test. Constr. Build. Mater. 2020, 244, 118321. DOI: https://doi.org/10.1016/j.conbuildmat.2020.118321
Jabir, H.A.; Abid, S.R.; Murali, G.; Ali, S.H.; Klyuev, S.; Fediuk, R.; Vatin, N.; Promakhov, V.; Vasilev, Y. Experimental tests and reliability analysis of the cracking impact resistance of uhpfrc. Fibers 2020, 8, 1–14. https://doi.org/10.3390/fib8120074. DOI: https://doi.org/10.3390/fib8120074
Jabir, H.A.; Abid, S.R.; Hussein, M.L.A.; Ali, S.H. Repeated drop-weight impact tests on RPC containing hybrid fibers. Appl. Mech. Mater. 2020, 897, 49–55. DOI: https://doi.org/10.4028/www.scientific.net/AMM.897.49
Mahakavi, P.; Chithra, R. Impact resistance, microstructures and digital image processing on self-compacting concrete with hooked end and crimped steel fiber. Constr. Build. Mater. 2019, 220, 651–666. DOI: https://doi.org/10.1016/j.conbuildmat.2019.06.001
Kathirvel, P.; Murali, G.; Vatin, N.I.; Abid, S.R. Experimental study on self compacting fibrous concrete comprising magnesium sulphate solution treated recycled aggregates. Materials 2022, 15, 340. DOI: https://doi.org/10.3390/ma15010340
Abid, S.R.; Abdul-Hussein, M.L.; Ayoob, N.S.; Ali, S.H.; Kadhum, A.L. Repeated drop-weight impact tests on self-compacting concrete reinforced with micro-steel fiber. Heliyon 2020, 6, e03198. DOI: https://doi.org/10.1016/j.heliyon.2020.e03198
Abid, S.R.; Ali, S.H.; Goaiz, H.A.; Al-Gasham, T.S.; Kadhim, A.L. Impact resistance of steel fiber-reinforced self-compacting concrete. Mag. Civ. Eng. 2021, 105, 2712–8172.
Abid, S.R.; Gunasekaran, M.; Ali, S.H.; Kadhum, A.L.; Al-Gasham, T.S.; Fediuk, R.; Vatin, N.; Karelina, M. Impact performance of steel fiber-reinforced self-compacting concrete against repeated drop weight impact. Crystals 2021, 11, 1–17. DOI: https://doi.org/10.3390/cryst11020091
Murali, G.; Abid, S.R.; Mugahed Amran, Y.H.; Abdelgader, H.S.; Fediuk, R.; Susrutha, A.; Poonguzhali, K. Impact performance of novel multi-layered prepacked aggregate fibrous composites under compression and bending. Structures 2020, 28, 1502–1515. DOI: https://doi.org/10.1016/j.istruc.2020.10.001
Murali, G.; Abid, S.R.; Karthikeyan, K.; Haridharan, M.K.; Amran, M.; Siva, A. Low-velocity impact response of novel prepacked expanded clay aggregate fibrous concrete produced with carbon nano tube, glass fiber mesh and steel fiber. Constr. Build. Mater. 2021, 284, 122749. DOI: https://doi.org/10.1016/j.conbuildmat.2021.122749
Murali, G.; Abid, S.R.; Amran, M.; Fediuk, R.; Vatin, N.; Karelina, M. Combined effect of multi-walled carbon nanotubes, steel fibre and glass fibre mesh on novel two-stage expanded clay aggregate concrete against impact loading. Crystals 2021, 11, 720. DOI: https://doi.org/10.3390/cryst11070720
Haridharan, M.K.; Matheswaran, S.; Murali, G.; Abid, S.R.; Fediuk, R.; Mugahed Amran, Y.H.; Abdelgader, H.S. Impact response of two-layered grouted aggregate fibrous concrete composite under falling mass impact. Constr. Build. Mater. 2020, 263, 120628. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120628
Murali, G.; Prasad, N.; Klyuev, S.; Fediuk, R.; Abid, S.R.; Amran, M.; Vatin, N. Impact resistance of functionally layered two-stage fibrous concrete. Fibers 2021, 9, 88. DOI: https://doi.org/10.3390/fib9120088
Murali, G.; Prasad, N.; Abid, S.R.; Vatin, N.I. Response of functionally graded preplaced aggregate fibrous concrete with superior impact strength. Buildings 2022, 12, 563. DOI: https://doi.org/10.3390/buildings12050563
Vatin, N.I.; Murali, G.; Abid, S.R.; de Azevedo, A.R.G.; Tayeh, B.; Dixit, S. Enhancing the impact strength of prepacked aggregate fibrous concrete using asphalt-coated aggregates. Materials 2022, 15, 2598. DOI: https://doi.org/10.3390/ma15072598
Ramakrishnan, K.; Depak, S.R.; Hariharan, K.R.; Abid, S.R.; Murali, G.; Cecchin, D.; Fediuk, R.; Mugahed Amran, Y.H.; Abdelgader, H.S.; Khatib, J.M. Standard and modified falling mass impact tests on preplaced aggregate fibrous concrete and slurry infiltrated fibrous concrete. Constr. Build. Mater. 2021, 298, 123857. DOI: https://doi.org/10.1016/j.conbuildmat.2021.123857
Murali, G.; Abid, S.R.; Amran, M.; Vatin, N.I.; Fediuk, R. Drop-weight impact test on prepacked aggregate fibrous concrete- An experimental study. Materials 2022, 15, 3096. DOI: https://doi.org/10.3390/ma15093096
Murali, G.; Abid, S.R.; Abdelgader, H.S.; Amran, Y.H.M.; Shekarchi, M.; Wilde, K. Repeated projectile impact tests on multi-layered fibrous cementitious composites. Int. J. Civ. Eng. 2021, 19, 635–651. DOI: https://doi.org/10.1007/s40999-020-00595-4
Murali, G.; Abid, S.R.; Vatin, N.I. Experimental and analytical modeling of flexural impact strength of preplaced aggregate fibrous concrete beams. Materials 2022, 15, 3857. DOI: https://doi.org/10.3390/ma15113857
Swaminathan, P.; Karthikeyan, K.; Subbaram, S.R.; Sudharsan, J.S.; Abid, S.R.; Murali, G.; Vatin, N.I. Experimental and statistical investigation to vvaluate impact strength variability and reliability of preplaced aggregate concrete containing crumped rubber and fibres. Materials 2022, 15, 5156. DOI: https://doi.org/10.3390/ma15155156
Murali, G.; Laxminadh Poka.; Parthiban, K.; Haridharan, M.K.; Siva, A. Impact response of novel fibre-reinforced grouted aggregate rubberized concrete. Arabian. J. Sci. Eng. 2019, 44, 8451–8463 DOI: https://doi.org/10.1007/s13369-019-03819-5
Murali, G.; Abid, S.R.; Vatin, N.I.; Amran, M.; Fediuk, R. Influence of height and weight of drop hammer on impact strength and fracture toughness of two-stage fibrous concrete comprising nano carbon tubes. Constr. Build. Mater. 2022, 349, 128782. DOI: https://doi.org/10.1016/j.conbuildmat.2022.128782
Abbass, A.A.; Abid, S.R.; Abed, A.I.; Ali, S.H. Experimental and statistical study of the effect of steel fibers and design strength on the variability in repeated impact test results. Fibers 2023, 11, 4. DOI: https://doi.org/10.3390/fib11010004
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Wasit Journal of Engineering Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.

