Comparison of various machine learning regression models based on Human age prediction

Authors

  • Dr.Manaf K Hussein

DOI:

https://doi.org/10.31185/ejuow.Vol10.Iss3.386

Keywords:

Machine learning, regression model, GPR, Elastic Net, L-SVR, RBF-LVR, RVR, brain-age prediction

Abstract

The development of machine learning strategies has made it possible to diagnose some disease automatically based on data obtained from medical imaging. Brain age is one of the factors that can be used as an indicator of cognitive well-being. Recent advancements in machine learning have made it possible for computers to anticipate classification and prediction outcomes more accurately than humans.

In this study, five widely used machine learning  regression models (Linear support vector regression (L-SVR), radial basis function support vector regression (RBF-SVR), relevance vector regression (RVR), Elastic Net and Gaussian process regression (GPR)) were trained and evaluated to predict brain age using volumes of brain regions data. Moreover, a dimensionality reduction technique was utilized to reduce the dimensionality of the input feature space. The data were collected from one hundred and eleven participants.

The results showed no performance difference amongst models trained on the same type of data, suggesting that the type of input data had a stronger influence on prediction performance than the model choice. The experimental results indicated that the GPR was the best fit model (R2=0.57, R=0.75) among the other regression models while the G-SVR was the worst fit model (R2=0.0006, R=0.025) with such number of the input data. 

References

United Nations, Department of Economic and Social Affairs, P. D. (2019). World population prospects 2019: Highlights (Issue ST/ESA/SER.A/423). Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/ 12283219.

Efraim Jaul and Jeremy Barron. (2017). ‘Age-Related Diseases and Clinical and Public Health Implications for the 85 Years Old and Over Population’. Frontiers in Public Health, Dec.2017. pubmed.ncbi.nlm.nih.gov/29312916/. doi: 10.3389/fpubh.2017.00335

Lea Baeckera, Rafael Garcia-Diasa, Sandra Vieiraa, Cristina Scarpazzaa,b, Andrea Mechellia, (2021). ‘Machine learning for brain age prediction: Introduction to methods and clinical applications’.

EBioMedicine 72 ,103600, https://doi.org/10.1016/j.ebiom.2021.103600

LeCun, Y., Bengio, Y., Hinton, G., (2015). Deep learning. Nature 521, 436 – 444.

https: //doi.org/10.1038/nature14539

Lin, W., Tong, T., Gao, Q., Guo, D., Du, X., Yang, Y., Guo, G., Xiao, M., Du, M., Qu, X. (2018). “Convolutional neural networks-based MRI image analysis for the Alzheimer’s disease prediction from mild cognitive impairment’. Alzheimer’s Disease Neuroimaging Initiative, T.A.D.N., Front. Neurosci. 12, 777,. https://doi.org/ 10.3389/fnins.00777.

Liu, M., Zhang, J., Adeli, E., Shen, D.,( 2018). ‘Landmark-based deep multi-instance learning for brain disease diagnosis’. Med. Image Anal. 43, 157–168. https://doi. org/10.1016/j.media.2017.10.005 .

Kohl, S.A. A ., Romera-Paredes, B., Meyer, C., De Fauw, J., Ledsam, J.R., Maier-Hein, K.H., Ali Eslami, S.M., Rezende, D.J., Ronneberger, O. (2018), ‘A probabilistic U-net for segmentation of ambiguous images.,Advances in Neural Information Processing Systems. pp. 6965–6975.

Cole, J. H., & Franke, K. (2017). ‘Predicting age using neuroimaging: Innovative brain ageing biomarkers’. Trends in Neurosciences, 40(12),681–690. https://doi.org/10.1016/j.tins.2017.10.001

Kawahara, J., Brown, C.J., Miller, S.P., Booth, B.G., Chau, V., Grunau, R.E., Zwicker, J.G., Hamarneh, G., (2017). ‘BrainNetCNN: convolutional neural networks for brain networks; towards predicting neurodevelopment’. Neuroimage 146, 1038–1049. https://doi.org/10.1016/j.

Cole, J. H., Franke, K., & Cherbuin, N. (2019). Quantification of the biological age of the brain using neuroimaging. ‘Biomarkers of human aging. Healthy ageing and longevity’. Vol. 10, pp. 293–328. Cham, Switzerland: Springer.

Smith, S.M., Elliott, L.T., Alfaro-Almagro, F., McCarthy, P., Nichols, T.E., Douaud, G., Miller, K.L., (2020). ‘Brain aging comprises many modes of structural and functional change with distinct genetic and biophysical associations’. Elife 9, 802686. https://doi.org/10.7554/eLife.52677.

Jiang H, Lu N, Chen K, Yao L, Li K, Zhang J and Guo X, (2020).” Predicting Brain Age of Healthy Adults Based on Structural MRI Parcellation Using Convolutional Neural Networks”. Front. Neurol. 10:1346. doi: 10.3389/fneur.2019.01346

Peng H, Gong W, Beckmann CF, Vedaldi A, Smith SM. (2021); ‘Accurate brain age prediction

with lightweight deep neural networks. Med Image Anal 68:101871.

Lea Baecker, Jessica Dafflon,Pedro F. da Costa, Rafael Garcia-Dias, Sandra Vieira, Cristina Scarpazza, Vince D. Calhoun, Joao R. Sato, Andrea Mechelli, and Walter H. L. Pinaya. (2021), ‘Brain age prediction: A comparison between machine learning models using region- and voxel-based morphometric data’. Hum Brain Mapp; 42:2332–2346. https://doi:10.1002/hbm.25368

Beheshti, M. A. Ganaie, V. Paliwal, A. Rastogi, I. Razzak and M. Tanveer,(2022) "Predicting Brain Age Using Machine Learning Algorithms: A Comprehensive Evaluation," in IEEE Journal of Biomedical and Health Informatics, vol. 26, no. 4, pp. 1432-1440, doi: 10.1109/JBHI.2021.3083187. https://pubmed.ncbi.nlm.nih.gov/34029201/

Gómez-Ramírez, J., Miguel A. Fernández-Blázquez, and Javier J. González-Rosa, (2022). "Prediction of Chronological Age in Healthy Elderly Subjects with Machine Learning from MRI Brain Segmentation and Cortical Parcellation" Brain Sciences 12, no. 5: 579. https://doi.org/10.3390/brainsci12050579

Bruce Fischl, FreeSurfer, Neuroimage. (2012) Aug 15;62(2):774-81. doi:10.1016/j. neuroimage.2012.01.021. https://pubmed.ncbi.nlm.nih.gov/22248573/

Christophe Destrieux , Bruce Fischl, Anders Dale, Eric Halgren,(2010),’Automatic Parcellation of Human Cortical Gyri and Sulci using Standard Anatomical Nomenclature’. Neuroimage 15;53(1):pp1-15. https://pubmed.ncbi.nlm.nih.gov/20547229/

Kira, K., & Rendell, L. A. (1992b). ‘A Practical Approach to Feature Selection’. Machine Learning Proceedings 1992. pp. 249-256. https://doi.org/10.1016/B978-1-55860-247-2.50037-1

Robnik-Sikonja, M., and I. Kononenko. (2003). ‘Theoretical and Empirical Analysis of ReliefF and RReliefF’. Machine Learning, 53, 23–69

Dietterich, T. G. (1997). Machine learning research: Four current directions. AI Magazine, 18:4, 97–136.

Cortes, C., & Vapnik, V. (1995). ‘Support Vector |Networks’. Machine Learning, 20, 273–297. https://doi.org/10.1109/64.163674.

Raoof Gholami, Nikoo Fakhari (2017),‘Support Vector Machine: Principles, Parameters, and Applications’; Chapter 27of Handbook of Neural Computation., pp. 515-535.

https://doi.org/10.1016/B978-0-12-811318-9.00027-2.

Smola, A.J., Schölkopf, B. (2004), ‘A Tutorial on Support Vector Regression’. Statistics and Computing )14(, 199–222 . https://doi.org/10.1023/B:STCO.0000035301.49549.88

Tipping, M. E. (2001). ‘Sparse Bayesian learning and the relevance vector machine’. Journal of Machine Learning Research, 1, 211–244. https://doi.org/10.1162/153244301527482364

Franke, K., & Gaser, C. (2019). ‘10 years of Brain-AGE as a neuroimaging biomarker of brain aging: What insights did we gain?’, Frontiers in Neurology, 10(789), 1–26. https://doi.org/10.3389/FNEUR.2019.00789

Williams, C. K. I., & Rasmussen, C. E. (1996). ‘Gaussian processes for regression’. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems (pp. 514–520). Cambridge,

Lizhen Lin. Niu Mu. Pokman Cheung. David Dunson.(2019) .‘Extrinsic Gaussian Processes for Regression and Classification on Manifolds’. Bayesian Anal. 14 (3) 887- 906, 2019. https://doi.org/10.1214/18-BA1135

Ebden, M. (2008). ‘Gaussian Processes for Regression: A Quick Introduction’. Retrieved from https://api.semanticscholar.org/CorpusID:124877894

Hui Zou and Trevor Hastie (2005), ‘Regularization and Variable Selection via the Elastic Net’. J. R. Statist. Soc. B 67, Part 2, pp. 301–320.

Ruyi Xiao, Xinchun Cuia ,Hong Qiaob, Xiangwei Zhengc, Yiquan Zhang , Chenghui Zhanga and Xiaoli Liu.(2021) ,‘Early Diagnosis Model of Alzheimer’s Disease Based on Sparse Logistic Regression With the Generalized Elastic Net’. Biomedical Signal Processing and Control, ) 66( , 102362. https://doi.org/10.1016/j.bspc.2020.102362

Implementation of Elastic Net regression retrived from https://www.geeksforgeeks.org/implementation-of-elastic-net-regression-from-scratch/

Chris Hans, (2011)‘Elastic Net Regression Modeling with the Orthant Normal Prior’, Journal of the American Statistical Association, Volume 106, ) 496(. https://doi.org/10.1198/jasa.2011.tm09241

Bouzid Ait-Amir, Philippe Pougnet and Abdelkhalak El Hami.(2020), ‘6 - Meta-Model Development’, Embedded Mechatronic Systems. Analysis of Failures, Modeling, Simulation and Optimization , Pages 157-187, https://doi.org/10.1016/B978-1-78548-014-0.50006-2

Gutierrez Becker, B., Klein, T., & Wachinger, C. (2018). ‘Gaussian process uncertainty in age estimation as a measure of brain abnormality’. NeuroImage, (175), 246–258. https://doi.org/10.1016/j.neuroimage.2018.03.075

Aycheh, H. M., Seong, J. K., Shin, J. H., Na, D. L., Kang, B., Seo, S. W., & Sohn, K.-A. (2018). ‘Biological brain age prediction using cortical thickness data: A large scale cohort study’. Frontiers in Aging Neuroscience, 10(252), 1–14. https://doi.org/10.3389/fnagi.2018.00252

Beheshti, I., Nugent, S., Potvin, O., & Duchesne, S. (2019). ‘Bias-adjustment in neuroimaging-based brain age frameworks: A robust scheme’. NeuroImage: Clinical, )24(, 102063. https://doi.org/10.1016/j.nicl.2019.102063

De Lange, A. M. G., & Cole, J. H. (2020). ‘Commentary: Correction procedures in brain-age prediction’. NeuroImage: Clinical, )26), 24–26. https://doi.org/10.1016/j.nicl.2020.102229

Cole, J. H., Raffel, J., Friede, T., Eshaghi, A., Brownlee, W. J., Chard, D., Ciccarelli, O. (2020). ‘Longitudinal assessment of multiple sclerosis with the brain-age paradigm’. Annals of Neurology, )88(, 93–105. https://doi.org/10.1002/ana.25746

Le, T. T., Kuplicki, R. T., McKinney, B. A., Yeh, H.-W., Thompson, W. K., Paulus, M. P., & Tulsa 1000 Investigators. (2018). ‘A nonlinear simulation framework supports adjusting for age when analyzing Brain-AGE’. Frontiers in Aging Neuroscience, 10(317), 1–11. https://doi.org/10.3389/fnagi.2018.00317

Downloads

Published

2022-11-03

Issue

Section

Electrical Engineering

How to Cite

Hussein, D. K. (2022). Comparison of various machine learning regression models based on Human age prediction. Wasit Journal of Engineering Sciences, 10(3), 1-16. https://doi.org/10.31185/ejuow.Vol10.Iss3.386