Assessment of Water Quality of Tigris River and branch in Alkut City by using Water Quality Index (WQIA)
DOI:
https://doi.org/10.31185/ejuow.Vol10.Iss3.370Keywords:
Water Quality Index, River Tigris, AL kut CityAbstract
Our water quality continues to be negatively impacted by human activities, this is a global problem of critical importance (particularly concerning fresh water and human consumption). Since the 1960s, the critical water quality index (WQI) technique has been used to assess the worldwide water quality state of surface water and groundwater systems. Plans for water resource management must consider extensive data and knowledge about the quality of available water. Water quality indicators are a straightforward technical method for evaluating the state of a river's water quality. In this approach, many water quality characteristics are examined and interpreted in research on river water quality. It can be considered the most important parts of monitoring plans for river quality. In this study, a monitoring plan is achieved for three different stations located on Tigris and branch rivers Al-Dujaili and Al-Gharraf in Wasit/ Kut during the study period for eight weeks from 1/3/2022 to 1/5/2022. Water quality assessment has been conducted using arithmetic quality indices of general water used for drinking and agricultural consumption. It is where the qualitative indices are turned into a single number with no units. Classifying water quality is done by comparing the values of the indices to a scale of ratings that have already been set up. In this study, It has been utilized the Water Quality Index. The following physical and chemical factors are used to determine the water quality index: pH, total dissolved solids (TDS), turbidity, biological oxygen demand (BOD5), nitrate (NO3), sulphate (SO4), chloride (Cl), and phosphate (PO4). The results showed that each station had a low rating for the water quality index The average readings for the Tigris River were 187.44, Al-Dujaili 211.49 and Al-Gharaf 255.85, showing that Tigris River and its branches' water is seriously polluted for aquatic life due to the discharge of insufficiently treated wastewater from Kut's residential neighbourhoods.
References
Salim, B.J.; Bidhendi, G.N.; Salemi, A. Water Quality Assessment of Gheshlagh River Using Water Quality Indices. Environ. Sci. 2009, 6, 19–28.
Adimalla, N.; Qian, H. Groundwater Quality Evaluation Using Water Quality Index (WQI) for Drinking Purposes and Human Health Risk (HHR) Assessment in an Agricultural Region of Nanganur, South India. Ecotoxicol. Environ. Saf. 2019, 176, 153–161, doi:10.1016/j.ecoenv.2019.03.066. DOI: https://doi.org/10.1016/j.ecoenv.2019.03.066
Gyamfi, C.; Boakye, R.; Awuah, E.; Anyemedu, F. Application of the Ccme-Wqi Model in Assessing the Water Quality of the Aboabo River, Kumasi-Ghana. J. Sustain. Dev. 2013, 6, doi:10.5539/jsd.v6n10p1.
Canal, S. Microbial Pollution of Water in El-Salam Canal ,. 2015.
Water Quality Evaluation OfEkulu River Using Water Quality Index (WQI). J. Environ. Stud. 2019, 5, 1–4, doi:10.13188/2471-4879.1000027. DOI: https://doi.org/10.13188/2471-4879.1000027
Subramani, T.; Rajmohan, N.; Elango, L. Groundwater Geochemistry and Identification of Hydrogeochemical Processes in a Hard Rock Region, Southern India. Environ. Monit. Assess. 2010, 162, 123–137, doi:10.1007/s10661-009-0781-4. DOI: https://doi.org/10.1007/s10661-009-0781-4
Lumb, A.; Sharma, T.C.; Bibeault, J.-F. A Review of Genesis and Evolution of Water Quality Index (WQI) and Some Future Directions. Water Qual. Expo. Heal. 2011, 3, 11–24, doi:10.1007/s12403-011-0040-0. DOI: https://doi.org/10.1007/s12403-011-0040-0
Al-Ansari, N.; Aljawad, S.; Adamo, N.; Sissakian, V.K.; Laue, J.; Knutsson, S. Water Quality within the Tigris and Euphrates Catchments. J. Earth Sci. Geotech. Eng. 2018, 8, 1792–9660.
Gyamfi, C.; Boakye, R.; Awuah, E.; Anyemedu, F. Application of the Ccme-Wqi Model in Assessing the Water Quality of the Aboabo River, Kumasi-Ghana. J. Sustain. Dev. 2013, 6, doi:10.5539/jsd.v6n10p1. DOI: https://doi.org/10.5539/jsd.v6n10p1
Robertson, D.M.; Saad, D.A.; Heisey, D.M. A Regional Classification Scheme for Estimating Reference Water Quality in Streams Using Land-Use-Adjusted Spatial Regression-Tree Analysis. Environ. Manage. 2006, 37, 209–229, doi:10.1007/s00267-005-0022-8. DOI: https://doi.org/10.1007/s00267-005-0022-8
Montanari, D.; Bremer, J.; Gendotti, A.; Geynisman, M.; Hentschel, S.; Loew, T.; Mladenov, D.; Montanari, C.; Murphy, S.; Nessi, M.; et al. Development of Membrane Cryostats for Large Liquid Argon Neutrino Detectors. IOP Conf. Ser. Mater. Sci. Eng. 2015, 101, doi:10.1088/1757-899X/101/1/012049. DOI: https://doi.org/10.1088/1757-899X/101/1/012049
Ewaid, S.H.; Abed, S.A. Water Quality Index for Al-Gharraf River, Southern Iraq. Egypt. J. Aquat. Res. 2017, 43, 117–122, doi:10.1016/j.ejar.2017.03.001. DOI: https://doi.org/10.1016/j.ejar.2017.03.001
Wickham, J.D.; Riitters, K.H.; Wade, T.G.; Jones, K.B. Evaluating the Relative Roles of Ecological Regions and Land-Cover Composition for Guiding Establishment of Nutrient Criteria. Landsc. Ecol. 2005, 20, 791–798, doi:10.1007/s10980-005-0067-3. DOI: https://doi.org/10.1007/s10980-005-0067-3
Province, A.; Prof, A.; Soaded, A. Application of Water Quality Index and Water Suitability for Drinking of the Euphrates River withi. 2013, 19.
Satish Chandra, D.; Asadi, S.S.; Raju, M.V.S. Estimation of Water Quality Index by Weighted Arithmetic Water Quality Index Method: A Model Study. Int. J. Civ. Eng. Technol. 2017, 8, 1215–1222.
Ilayaraja, K.; Ambica, A. Spatial Distribution of Groundwater Quality between Injambakkam-Thiruvanmyiur Areas, South East Coast of India. Nat. Environ. Pollut. Technol. 2015, 14, 771–776.
Morshed, M.M.; Islam, M.T.; Jamil, R. Soil Salinity Detection from Satellite Image Analysis: An Integrated Approach of Salinity Indices and Field Data. Environ. Monit. Assess. 2016, 188, 1–10, doi:10.1007/s10661-015-5045-x. DOI: https://doi.org/10.1007/s10661-015-5045-x
Issa, I.E.; Al-Ansari, N.A.; Sherwany, G.; Knutsson, S. Expected Future of Water Resources within Tigris-Euphrates Rivers Basin, Iraq. J. Water Resour. Prot. 2014, 06, 421–432, doi:10.4236/jwarp.2014.65042. DOI: https://doi.org/10.4236/jwarp.2014.65042
Al-Dabbas, M.A.; Maiws, S.O. Validity of Dujaila River Water within Wasit Governorate-Central Iraq. Iraqi J. Sci. 2016, 57, 1452–1461.
Oketola, A.A.; Adekolurejo, S.M.; Osibanjo, O. Water Quality Assessment of River Ogun Using Multivariate Statistical Techniques. J. Environ. Prot. (Irvine,. Calif). 2013, 04, 466–479, doi:10.4236/jep.2013.45055. DOI: https://doi.org/10.4236/jep.2013.45055
Bidhuri, S.; Khan, M.M.A. Assessment of Ground Water Quality of Central and Southeast Districts of NCT of Delhi. J. Geol. Soc. India 2020, 95, 95–103, doi:10.1007/s12594-020-1390-7. DOI: https://doi.org/10.1007/s12594-020-1390-7
Luttik, J. The Value of Trees, Water and Open Space as Reflected by House Prices in the Netherlands. Landsc. Urban Plan. 2000, 48, 161–167, doi:10.1016/S0169-2046(00)00039-6. DOI: https://doi.org/10.1016/S0169-2046(00)00039-6
Al-Abadi, A.M. Modeling of Stage–Discharge Relationship for Gharraf River, Southern Iraq Using Backpropagation Artificial Neural Networks, M5 Decision Trees, and Takagi–Sugeno Inference System Technique: A Comparative Study. Appl. Water Sci. 2016, 6, 407–420, doi:10.1007/s13201-014-0258-7. DOI: https://doi.org/10.1007/s13201-014-0258-7
Shukla, M.; Arya, S. DETERMINATION OF CHLORIDE ION(Cl-) CONCENTRATION IN GANGA RIVER WATER BY MOHR METHOD AT KANPUR, INDIA. Green Chem. Technol. Lett. 2018, 4, 06–08, doi:10.18510/gctl.2018.412. DOI: https://doi.org/10.18510/gctl.2018.412
Zhang, X.; Zhang, Y.; Shi, P.; Bi, Z.; Shan, Z.; Ren, L. The Deep Challenge of Nitrate Pollution in River Water of China. Sci. Total Environ. 2021, 770, 144674, doi:10.1016/j.scitotenv.2020.144674. DOI: https://doi.org/10.1016/j.scitotenv.2020.144674
Ma, Q.; Xing, C.; Sun, H.; Zhang, X.; Xu, L. Distribution Characteristics and Source Analysis of Sulfate in the Main Rivers of Heze City, China. Water Sci. Technol. 2021, 84, 2818–2829, doi:10.2166/wst.2021.259. DOI: https://doi.org/10.2166/wst.2021.259
Ahipathy, M. V.; Puttaiah, E.T. Ecological Characteristics of Vrishabhavathy River in Bangalore (India). Environ. Geol. 2006, 49, 1217–1222, doi:10.1007/s00254-005-0166-0. DOI: https://doi.org/10.1007/s00254-005-0166-0
Lumb, A.; Halliwell, D.; Sharma, T. Application of CCME Water Quality Index to Monitor Water Quality: A Case of the Mackenzie River Basin, Canada. Environ. Monit. Assess. 2006, 113, 411–429, doi:10.1007/s10661-005-9092-6. DOI: https://doi.org/10.1007/s10661-005-9092-6
Belinawati, R.A.P.; Soesilo, T.E.B.; Herdiansyah, H.; Aini, I.N. BOD Pressure in the Sustainability of the Citarum River. E3S Web Conf. 2018, 52, 1–7, doi:10.1051/e3sconf/20185200037. DOI: https://doi.org/10.1051/e3sconf/20185200037
Gangwar, R.K.; Khare, P.; Singh, J.; Singh, A.P. Assessment of Physico-Chemical Properties of Water: River Ramganga at Bareilly, U.P. J. Chem. Pharm. Res. 2012, 4, 4231–4234.
Appavu, A.; Thangavelu, S.; Jesudoss, J.S.; Pandi, B. Research Paper STUDY OF WATER QUALITY PARAMETERS OF CAUVERY RIVER WATER. J. Glob. Biosci. 2016, 5, 4556–4567.
Sahu, P.; Sikdar, P.K. Hydrochemical Framework of the Aquifer in and around East Kolkata Wetlands, West Bengal, India. Environ. Geol. 2008, 55, 823–835, doi:10.1007/s00254-007-1034-x. DOI: https://doi.org/10.1007/s00254-007-1034-x
Hameed, A.; Jawad, M.; Obaidy, A. The Challenges of Water Sustainability in Iraq. Journal 2013, 31, 828–840.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Wasit Journal of Engineering Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.

