Nitrate adsorption by fired clay in fixed bed column

Authors

  • shahad ali wasit university
  • Ali J. Jaeel Civil Engineering Department, Wasit University, Iraq

DOI:

https://doi.org/10.31185/ejuow.Vol10.Iss3.356

Keywords:

Keywords: Adsorption;fire clay; nitrate; Bed depth column

Abstract

Excessive use of nitrogen fertilizers has increased nitrate concentrations in groundwater, which poses a health hazard from nitrate-contaminated drinking water and contributes to eutrophication. Nitrate removal from water systems has been carefully studied; However, new, low-cost solutions are urgently needed. Clay and terracotta minerals are commonly used in environmental applications due to their non-toxicity, global availability, low cost, and physical and chemical properties (ion-exchange capacity, high surface area, high adsorption, and catalytic properties). Although most are used to reduce cationic pollutants, depending on the method of modification or the materials with which they are mixed, they can be equally effective in removing anionic contamination. The goal of the study is to treat water containing excessive concentrations of nitrates to produce water of acceptable environmental specifications and to evaluate the performance of fired clay as a low-cost and environmentally friendly water treatment material.

References

Saravanan, R., Gupta, V., Mosquera, E., Gracia, F, J. Mol. Liq 2014. Preparation and characterization of V2O5/ZnO nanocomposite system for photocatalytic application. 198, 409–412 . DOI: https://doi.org/10.1016/j.molliq.2014.07.030

Saravanan, R., Khan, M.M., Gupta, V.K., Mosquera, E., Gracia, F., Narayanan, V., Stephen, A., RSC Adv 2015. ZnO/Ag/Mn 2 O 3 nanocomposite for visible light-induced industrial textile effluent degradation, uric acid and ascorbic acid sensing and antimicrobial activity 5, 34645–34651. DOI: https://doi.org/10.1039/C5RA02557E

Saleh, T.A., Gupta, V.K, Separ.2012 .Purif. Technol. Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance. 89, 245–251. DOI: https://doi.org/10.1016/j.seppur.2012.01.039

Gupta, V.K., Jain, C., Ali, I., Chandra, S., Agarwal, S., 2002. Water Res. Removal of lindane and malathion from wastewater using bagasse fly ash—a sugar industry waste. 36, 2483–2490. DOI: https://doi.org/10.1016/S0043-1354(01)00474-2

Khani, H., Rofouei, M.K., Arab, P., Gupta, V.K., Vafaei, Z., 2010 .Journal of Hazardous Materials. Multi walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: application to potentiometric monitoring of mercury ion (II). 183, 402–409. DOI: https://doi.org/10.1016/j.jhazmat.2010.07.039

Gupta, V.K., Saleh, T.A., 2013. Environ. Sci. Pollut. Res. Sorption of pollutants by porous carbon, carbon nanotubes and fullerene-an overview. 20, 2828–2843. DOI: https://doi.org/10.1007/s11356-013-1524-1

Pontius, E W. (1993). "Nitrate and cancer: is there a link." J. AWWA, 85(4), 12-14. DOI: https://doi.org/10.1002/j.1551-8833.1993.tb05966.x

Biswas, S., Fatema, J., Debnath, T., & Rashid, T. U. (2021). Chitosan–clay composites for wastewater treatment: a state-of-the-art review. ACS ES&T Water, 1(5), 1055-1085. DOI: https://doi.org/10.1021/acsestwater.0c00207

A. Abou-Shady, C. Peng, J. Bi, H. Xu, J. Almeria (2012). Recovery of Pb (II) and removal of NO3 from aqueous solutions using integrated electrodialysis, electrolysis, and adsorption process, Desalination 286 ,304–315, https://doi.org/10.1016/j. desal.2011.11.041. DOI: https://doi.org/10.1016/j.desal.2011.11.041

J.J. Schoeman, A. Steyn 2003. Nitrate removal with reverse osmosis in a rural area in South Africa, Desalination 15515–26, https://doi.org/10.1016/S0011- 9164(03)00235-2.

M. Kalaruban, P. Loganathan, W.G. Shim, J. Kandasamy, G. Naidu, T.V. Nguyen, S. Vigneswaran 2016. Removing nitrate from water using iron-modified Dowex 21K XLT ion exchange resin: Batch and fluidised-bed adsorption studies, Sep. Purif. Technol. 158 62–70. DOI: https://doi.org/10.1016/j.seppur.2015.12.022

M. Kumar, S. Chakraborty 2006. Chemical denitrification of water by zero-valent magnesium powder, J. Hazard. Mater. 135 112–121, https://doi.org/ 10.1016/j.jhazmat.2005.11.031. DOI: https://doi.org/10.1016/j.jhazmat.2005.11.031

S.C. Ahn, S.Y. Oh, D.K. Cha 2008. Enhanced reduction of nitrate by zero-valent iron at elevated temperatures, J.Hazard. Mater. 156 17–22, https://doi.org/10.1016/j.jhazmat.2007.11.104. DOI: https://doi.org/10.1016/j.jhazmat.2007.11.104

M. Kalaruban, P. Loganathan, J. Kandasamy, R. Naidu, S. Vigneswaran2017. Enhanced removal of nitrate in an integrated electrochemical-adsorption system, Sep. Purif. Technol. 189 260–266, https://doi.org/10.1016/j.seppur.2017.08.010. DOI: https://doi.org/10.1016/j.seppur.2017.08.010

Z. Aksu 2005. Application of biosorption for the removal of organic pollutants: a review, Process Biochem. 40 997–1026, https://doi.org/10.1016/j. procbio.2004.04.008 DOI: https://doi.org/10.1016/j.procbio.2004.04.008

M. K. Asl, A. H. Hasani, and E. Naserkhaki 2016. Biosci. Biotechnol. Res. Asia. Evaluation of nitrate removal from water using activated carbon and clinoptilolite by adsorption method 13( 2) 1045–1054. DOI: https://doi.org/10.13005/bbra/2131

V.C. Taty-Costodes, H. Fauduet, C. Porte, & Y.S. Ho 2005. “Removal of lead (II) ions from synthetic and real effluents using immobilized Pinus sylvestris sawdust : Adsorption on a fixed-bed column,” Journal of hazardous materials, 123, 1-3, pp.135-144. DOI: https://doi.org/10.1016/j.jhazmat.2005.03.032

M. Suzukl 1990. “Adsorption Engineering.”, 25, pp.2-5.

M. T. Yagub, T. K. Sen, S. Afroze, and H. M. Ang , 2015. “Fixed-bed dynamic column adsorption study of methylene blue (MB) onto pine cone,” Desalin. Water Treat., vol. 55, no. 4, pp. 1026–1039, doi: 10.1080/19443994.2014.924034. DOI: https://doi.org/10.1080/19443994.2014.924034

I. A. Basheer and Y. M. Najjar, 1996. “Predicting Dynamic Response of Adsorption Columns with Neural Nets,” J. Comput. Civ. Eng., vol. 10, no. 1, pp. 31–39, doi: 10.1061/(asce)0887-3801(1996)10:1(31). DOI: https://doi.org/10.1061/(ASCE)0887-3801(1996)10:1(31)

A. Ghosh, S. Chakrabarti, K. Biswas, and U. C. Ghosh 2015. “Column performances on fluoride removal by agglomerated Ce(IV)-Zr(IV) mixed oxide nanoparticles packed fixed-beds,” J. Environ. Chem. Eng., vol. 3, no. 2, pp. 653–661, doi: 10.1016/j.jece.2015.02.001. DOI: https://doi.org/10.1016/j.jece.2015.02.001

J. Goel, K. Kadirvelu, C. Rajagopal, and V. K. Garg 2005. “Removal of lead(II) by adsorption using treated granular activated carbon: Batch and column studies,” J. Hazard. Mater., vol. 125, no. 1–3, pp. 211–220, doi: 10.1016/j.jhazmat.2005.05.032.

J. Goel, K. Kadirvelu, C. Rajagopal, and V. K. Garg 2005. “Removal of lead(II) by adsorption using treated granular activated carbon: Batch and column studies,” J. Hazard. Mater., vol. 125, no. 1–3, pp. 211–220, doi: 10.1016/j.jhazmat.2005.05.032. DOI: https://doi.org/10.1016/j.jhazmat.2005.05.032

O. A. Petrii and T. Y. Safonova 1992. “Electroreduction of nitrate and nitrite anions on platinum metals: A model process for elucidating the nature of the passivation by hydrogen adsorption,” J. Electroanal. Chem., vol. 331, no. 1–2, pp. 897–912, doi: 10.1016/0022-0728(92)85013-S. DOI: https://doi.org/10.1016/0022-0728(92)85013-S

K. G. Bhattacharyya and S. Sen Gupta 2008.“Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review,” Adv. Colloid Interface Sci., vol. 140, no. 2, pp. 114–131, doi: 10.1016/j.cis.2007.12.008. DOI: https://doi.org/10.1016/j.cis.2007.12.008

Teribal .R.E1981. Mass- Transfer Operation: Third Edition: McGraw – Hill.

D.Reynolds,t 1995. unit operation and processes in environmental engineering: sharif university .

G. Cao, C.J. Brinker, in: G. Cao, C.J. Brinker (Eds.) 2008. Annual Review of Nano Research, World Scientific Publisher, p. 2. https://en.wikipedia.org/wiki/Potassium_nitrate. DOI: https://doi.org/10.1142/6703

Sabri, A. A., & Abbood, N. S 2019. Adsorption Study of Nitrate Anions by Different Materials Using Fixed Bed Column. Engineering and Technology Journal, 37(1), 156-162. DOI: https://doi.org/10.30684/etj.37.1C.25

Olgun, A., Atar, N., & Wang, S 2013. Batch and column studies of phosphate and nitrate adsorption on waste solids containing boron impurity. Chemical engineering journal, 222, 108-119. DOI: https://doi.org/10.1016/j.cej.2013.02.029

Salman Tabrizi, N., & Yavari, M 2020. Fixed bed study of nitrate removal from water by protonated cross-linked chitosan supported by biomass-derived carbon particles. Journal of Environmental Science and Health, Part A, 55(7), 777-787. DOI: https://doi.org/10.1080/10934529.2020.1741998

Nur, T., Shim, W. G., Loganathan, P., Vigneswaran, S., & Kandasamy, J 2015. Nitrate removal using Purolite A520E ion exchange resin: batch and fixed-bed column adsorption modelling. International journal of environmental science and technology, 12(4), 1311-1320. DOI: https://doi.org/10.1007/s13762-014-0510-6

Xu, X., Gao, B., Tan, X., Zhang, X., Yue, Q., Wang, Y., & Li, Q 2013. Nitrate adsorption by stratified wheat straw resin in lab-scale columns. Chemical engineering journal, 226, 1-6. DOI: https://doi.org/10.1016/j.cej.2013.04.033

Downloads

Published

2022-12-01

Issue

Section

Civil Engineering

How to Cite

ali, shahad, & Jaeel, A. J. (2022). Nitrate adsorption by fired clay in fixed bed column. Wasit Journal of Engineering Sciences, 10(3), 122-133. https://doi.org/10.31185/ejuow.Vol10.Iss3.356

Most read articles by the same author(s)