The Influence of the working fluid and Regenerator material on the Performance of the types Gamma Stirling Engine
DOI:
https://doi.org/10.31185/ejuow.Vol10.Iss3.336Keywords:
Stirling engine, Regenerator material, Working fluid. STE1008, NitrogenAbstract
In concentrated solar energy applications, the Stirling engine is the optimum option for extracting mechanical work. The engine's most notable features are minimal noise, vibration, and pollution, as well as its capacity to function with any external heat source, including biomass, solar energy, and industrial waste. The gamma-type STE-1008 Stirling engine is the subject of our research. This engine can handle a maximum charging pressure of 10 bar. The engine is divided into two sections (expansion and compression) and three heat exchangers (regenerator, cooler, and heater). The cooler is a finned aluminium heat exchanger with 144 internal fins, each with a cross-sectional area of 1 mm by 10 mm. The regenerator is fitted with a diameter of 31 m and a volumetric porosity of 90%. This investigation employed a random fiber with three different metals: stainless steel, copper, and aluminium. Nitrogen and air served as the working fluids. From the results, stainless steel, copper, and aluminium regenerators produced 583 W, 562 W, and 553 W, respectively. When nitrogen is utilized at 500 °C, the engine generates 11 N.m of torque compared to 8.5 N.m when air is used, and the engine has a thermal efficiency of 19% compared to 15% when air is used. The results of other researchers were used to compare and validate our model. With errors of no more than 12%, the results were close enough to the experimental data to be useful.
References
M. J. Li, Y. L. He, and W. Q. Tao, “Modeling a hybrid methodology for evaluating and forecasting regional energy efficiency in China,” Appl. Energy, vol. 185, no. 2017, pp. 1769–1777, 2017, DOI: 10.1016/j.apenergy.2015.11.082. DOI: https://doi.org/10.1016/j.apenergy.2015.11.082
M. H. Ahmadi, M. A. Ahmadi, and F. Pourfayaz, “Thermal models for the analysis of the performance of Stirling engine: A review,” Renew. Sustain. Energy Rev., vol. 68, no. July 2015, pp. 168–184, 2017, DOI: 10.1016/j.rser.2016.09.033. DOI: https://doi.org/10.1016/j.rser.2016.09.033
K. Wang, S. R. Sanders, S. Dubey, F. H. Choo, and F. Duan, “Stirling cycle engines for recovering low and moderate temperature heat: A review,” Renew. Sustain. Energy Rev., vol. 62, no. September 2018, pp. 89–108, 2016, DOI: 10.1016/j.rser.2016.04.031. DOI: https://doi.org/10.1016/j.rser.2016.04.031
D. G. Thombare and S. K. Verma, “Technological development in the Stirling cycle engines,” Renew. Sustain. Energy Rev., vol. 12, no. 1, pp. 1–38, 2008, DOI: 10.1016/j.rser.2006.07.001. DOI: https://doi.org/10.1016/j.rser.2006.07.001
R. Gheith, F. Aloui, and S. Ben Nasrallah, “Study of the regenerator constituting material influence on a gamma type Stirling engine,” J. Mech. Sci. Technol., vol. 26, no. 4, pp. 1251–1255, 2012, DOI: 10.1007/s12206-012-0218-9. DOI: https://doi.org/10.1007/s12206-012-0218-9
S. Alfarawi, R. Al-Dadah, and S. Mahmoud, “Enhanced thermodynamic modeling of a gamma-type Stirling engine,” Appl. Therm. Eng., vol. 106, pp. 1380–1390, 2016, doi: 10.1016/j.applthermaleng.2016.06.145. DOI: https://doi.org/10.1016/j.applthermaleng.2016.06.145
W. E. Juwana, O. Dwi, H. Putra, and S. Huda, “Effects of Working Fluids on the Performance of Stirling Engine The 12th Annual National Seminar Of Mechanical Engineering (SNTTM XII) Effects of Working Fluids on the Performance of Stirling Engine,” no. October 2013, DOI: 10.13140/2.1.2365.3125.
M. H. Katooli, R. Askari Moghadam, and M. Hooshang, “Investigation on effective operating variables in gamma-type Stirling engine performance: a simulation approach,” SN Appl. Sci., vol. 2, no. 4, pp. 1–7, 2020, DOI: 10.1007/s42452-020-2526-5. DOI: https://doi.org/10.1007/s42452-020-2526-5
M. Khmelniuk, V. Trandafilov, O. Ostapenko, and Y. Baidak, “Numerical investigation of working fluid influence on Stirling refrigeration machine performance,” Refrig. Sci. Technol., vol. 2017-Septe, no. 1, pp. 6–9, 2017, doi: 10.18462/iir.compr.2017.0211.
W. L. Chen, K. L. Wong, and H. E. Chen, “An experimental study on the performance of the moving regenerator for a γ-type twin power piston Stirling engine,” Energy Convers. Manag., vol. 77, pp. 118–128, 2014, DOI: 10.1016/j.enconman.2013.09.030. DOI: https://doi.org/10.1016/j.enconman.2013.09.030
S. Oberweis and T. T. Al-Shemmeri, “γ-Stirling engine – The effect of different working gases and pressures,” Renew. Energy Power Qual. J., vol. 1, no. 9, pp. 315–320, 2011, doi: 10.24084/repqj09.322. DOI: https://doi.org/10.24084/repqj09.322
“Stirling School of Engines.” [Online]. Available: http://stirlingmotor.ir/. [Accessed: 25-Aug-021].
M. B. Ibrahim and R. C. Tew Jr, Stirling convertor regenerators: CRC Press, 2011.
C.-H. Cheng, H.-S. Yang, and L. Keong, "Theoretical and experimental study of a 300- W beta-type Stirling engine," Energy, vol. 59, pp. 590-599, 2013 DOI: https://doi.org/10.1016/j.energy.2013.06.060
A.Ross, Making stirling engines: Ross experimental, 1993.
B. Kongtragool and S. Wongwises, “A review of solar-powered Stirling engines and low-temperature differential Stirling engines,” Renew. Sustain. Energy Rev., vol. 7, no. 2, pp. 131–154, 2003, DOI: 10.1016/S1364-0321(02)00053-9. DOI: https://doi.org/10.1016/S1364-0321(02)00053-9
R. Tew, T. Simon, D. Gedeon, M. Ibrahim, and W. Rong, “An initial non-equilibrium porous-media model for CFD simulation of Stirling regenerators,” Collect. Tech. Pap. - 4th Int. Energy Convers. Eng. Conf., vol. 1, pp. 65–77, 2006, DOI: 10.2514/6.2006-4003. DOI: https://doi.org/10.2514/6.2006-4003
A. Wagner, “Calculations and experiments on Gamma-type Stirling engines,” no. March, p. 307, 2008, [Online]. Available: http://orca.cf.ac.uk/54 057/1/U585566pdf.
S. Alfarawi, R. AL-Dadah, and S. Mahmoud, “Influence of phase angle and dead volume on gamma-type Stirling engine power using CFD simulation,” Energy Convers. Manag., vol. 124, no. February 2020, pp. 130–140, 2016, doi: 10.1016/j.enconman.2016.07.016. DOI: https://doi.org/10.1016/j.enconman.2016.07.016
J. K. Ferrell and E. P. Stahel, “Heat transfer,” Ind. Eng. Chem., vol. 58, no. 12, pp. 42–54, 1966, doi: 10.1021/ie50684a008. DOI: https://doi.org/10.1021/ie50684a008
C. Multiphysics, “COMSOL Multiphysics Programming Reference Manual 5.6,” 2020.
V. Bhaskar, “Introduction to COMSOL Multiphysics Introduction to C omsol Multiphysics,. COMSOL Multiphysics, Burlington, MA, 1998.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Wasit Journal of Engineering Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.

