Numerical Modelling of Underground Water Pipelines exposed to Seismic Loading
DOI:
https://doi.org/10.31185/ejuow.Vol9.Iss2.283Keywords:
: Numerical analysis, buried pipelines, Earthquakes, Seismic displacement, PLAXIS—2DAbstract
The essential factor that must get the interest by the engineers during the primary design stage of underground pipes is understanding mechanism of damage during earthquakes. The attention during design period increased due to the increment of seismic catastrophes throughout the few past decades. Therefore, finite element procedure was used for studying the seismic performance of buried pipes. PLAXIS-2D program was using for simulating the seismic performance of buried pipes using earthquake motion of single frequency. The response of both seismic vertical displacement, and acceleration of the buried pipe were simulated. The experiments of shaking table for two models of buried pipe in dry case that surrounded with sand and gravel were compared with numerical simulation results. According to the obtained results, the amplification of seismic wave raised considerably from the buried pipe base to the pipe crown, the biggest amplification occurred in the highest point of the pipe model. It can be noticed that Plaxis-2D software provides an accurate method for the prediction of seismic behaviour of buried pipe due to the obvious compatibility between the results of experiments and numerical simulation.
References
Wang, D. (2010). Response of underground pipeline to random ground motion. Tianjin, China: Tianjin Univ. Tianjin.
O’rourke, T. D., & Jeon, S. S. (2000, November). Seismic zonation for lifelines and utilities. In Invited Keynote Paper on Lifelines. Proceedings sixth international conference on seismic zonation, Palm Springs, EERI CD ROM.
Campedel, M., Cozzani, V., Garcia‐Agreda, A., & Salzano, E. (2008). Extending the quantitative assessment of industrial risks to earthquake effects. Risk Analysis: An International Journal, 28(5), 1231-1246. DOI: https://doi.org/10.1111/j.1539-6924.2008.01092.x
Salzano, E., Iervolino, I., & Fabbrocino, G. (2003). Seismic risk of atmospheric storage tanks in the framework of quantitative risk analysis. Journal of Loss Prevention in the Process Industries, 16(5), 403-409. DOI: https://doi.org/10.1016/S0950-4230(03)00052-4
Lanzano, G., Salzano, E., de Magistris, F. S., & Fabbrocino, G. (2013). Seismic vulnerability of natural gas pipelines. Reliability Engineering & System Safety, 117, 73-80 DOI: https://doi.org/10.1016/j.ress.2013.03.019
Lanzano, G., de Magistris, F. S., Fabbrocino, G., & Salzano, E. (2014). Integrated approach to the seismic vulnerability assessment of industrial underground equipment and pipelines. Bollettino di Geofisica Teorica ed Applicata, 55(1).
Panico, A., Lanzanoa, G., & Salzanoc, E. (2013). Seismic vulnerability of wastewater treatment plants. Chemical Engineering, 32.
Lanzano, G., de Magistris, F. S., Fabbrocino, G., & Salzano, E. (2014). Integrated approach to the seismic vulnerability assessment of industrial underground equipment and pipelines. Bollettino di Geofisica Teorica ed Applicata, 55 (1).
Elshimi, T. M., & Moore, I. D. (2013). Modeling the effects of backfilling and soil compaction beside shallow buried pipes. Journal of Pipeline Systems Engineering and Practice, 4(4), 04013004 DOI: https://doi.org/10.1061/(ASCE)PS.1949-1204.0000136
Alzabeebee, S., Chapman, D. N., & Faramarzi, A. (2018). Innovative approach to determine the minimum wall thickness of flexible buried pipes. Geomechanics Eng., 15(2), 755-767.
Dhar, A. S., Moore, I. D., & McGrath, T. J. (2004). Two-dimensional analyses of thermoplastic culvert deformations and strains. Journal of geotechnical and geoenvironmental engineering, 130(2), 199-208. DOI: https://doi.org/10.1061/(ASCE)1090-0241(2004)130:2(199)
Kang, J., Parker, F., & Yoo, C. H. (2007). Soil-structure interaction and imperfect trench installations for deeply buried corrugated polyvinyl chloride pipes. Transportation research record, 2028(1), 192-202. DOI: https://doi.org/10.3141/2028-21
Kang, J. S., Stuart, S. J., & Davidson, J. S. (2013). Analytical evaluation of maximum cover limits for thermoplastic pipes used in highway construction. Structure and Infrastructure Engineering, 9(7), 667-674 DOI: https://doi.org/10.1080/15732479.2011.604090
Sargand, S., Masada, T., Tarawneh, B., & Gruver, D. (2008). Deeply buried thermoplastic pipe field performance over five years. Journal of geotechnical and geoenvironmental engineering, 134(8), 1181-1191. DOI: https://doi.org/10.1061/(ASCE)1090-0241(2008)134:8(1181)
Zhou, M., Du, Y. J., Wang, F., Arulrajah, A., & Horpibulsuk, S. (2017). Earth pressures on the trenched HDPE pipes in fine-grained soils during construction phase: Full-scale field trial and finite element modeling. Transportation Geotechnics, 12, 56-69. DOI: https://doi.org/10.1016/j.trgeo.2017.08.002
Alzabeebee, S., Chapman, D. N., & Faramarzi, A. (2018). A comparative study of the response of buried pipes under static and moving loads. Transportation Geotechnics, 15, 39-46. DOI: https://doi.org/10.1016/j.trgeo.2018.03.001
Chaallal, O., Arockiasamy, M., & Godat, A. (2015). Field test performance of buried flexible pipes under live truck loads. Journal of Performance of Constructed Facilities, 29(5), 04014124. DOI: https://doi.org/10.1061/(ASCE)CF.1943-5509.0000624
Chaallal, O., Arockiasamy, M., & Godat, A. (2015). Numerical finite-element investigation of the parameters influencing the behavior of flexible pipes for culverts and storm sewers under truck load. Journal of Pipeline Systems Engineering and Practice, 6(2), 04014015 DOI: https://doi.org/10.1061/(ASCE)PS.1949-1204.0000186
Fattah, M. Y., Hassan, W. H., & Rasheed, S. E. (2018). Behavior of flexible buried pipes under geocell reinforced subbase subjected to repeated loading. International Journal of Geotechnical Earthquake Engineering (IJGEE), 9 (1), 22-41. DOI: https://doi.org/10.4018/IJGEE.2018010102
Fattah, M. Y., Hassan, W. H., & Rasheed, S. E. (2018). Effect of geocell reinforcement above buried pipes on surface settlement. International Review of Civil Engineering, 9(2), 86-90. DOI: https://doi.org/10.15866/irece.v9i2.13721
Kang, J., Stuart, S. J., & Davidson, J. S. (2014). Analytical study of minimum cover required for thermoplastic pipes used in highway construction. Structure and Infrastructure Engineering, 10(3), 316-327. DOI: https://doi.org/10.1080/15732479.2012.754478
Balkaya, M., Moore, I. D., & Sağlamer, A. (2012). Study of non-uniform bedding due to voids under jointed PVC water distribution pipes. Geotextiles and Geomembranes, 34, 39-50. DOI: https://doi.org/10.1016/j.geotexmem.2012.01.003
Balkaya, M., Moore, I. D., & Sağlamer, A. (2013). Study of non-uniform bedding support under continuous PVC water distribution pipes. Tunnelling and underground space technology, 35, 99-108. DOI: https://doi.org/10.1016/j.tust.2012.12.005
Al-Khazaali, M., Vanapalli, S. K., & Oh, W. T. (2019). Numerical investigation of soil–pipeline system behavior nearby unsupported excavation in saturated and unsaturated glacial till. Canadian Geotechnical Journal, 56(1), 69-88. DOI: https://doi.org/10.1139/cgj-2017-0411
Alzabeebee, S. (2020). Influence of backfill soil saturation on the structural response of buried pipes. Transportation Infrastructure Geotechnology, 7(2), 156-174. DOI: https://doi.org/10.1007/s40515-019-00094-7
Sim, W. W., Towhata, I., & Yamada, S. (2012). One-g shaking-table experiments on buried pipelines crossing a strike-slip fault. Geotechnique, 62(12), 1067-1079. DOI: https://doi.org/10.1680/geot.10.P.142
Sim WW, Towhata I, Yamada S, Moinet GM (2012) Shaking table tests modelling small diameter pipes crossing a vertical fault. Soil Dyn Earthq Eng 35:59–71. DOI: https://doi.org/10.1016/j.soildyn.2011.11.005
Xie, X., Symans, M. D., O'Rourke, M. J., Abdoun, T. H., O'Rourke, T. D., Palmer, M. C., & Stewart, H. E. (2011). Numerical modeling of buried HDPE pipelines subjected to strike-slip faulting. J.Earthq Eng, 15(8): 1273-1296. DOI: https://doi.org/10.1080/13632469.2011.569052
Xie X, Symans MD, O’Rourke MJ, Abdoun TH, O’Rourke TD,
Palmer MC, Stewart HE (2013) Numerical modeling of buried HDPE pipelines subjected to normal faulting: a case study. Earthq Spectra 29(2):609–632 DOI: https://doi.org/10.1193/1.4000137
Cameron, D. A. (2005). Analysis of buried flexible pipes in granular backfill subjected to construction traffic.
Malaki, S., & Mahjoubi, S. (2010). A new approach for estimating the seismic soil pressure on retaining walls.
Alzabeebee, S. (2019). Response of buried uPVC pipes subjected to earthquake shake. Innovative Infrastructure Solutions, 4(1), 1-14. ISO 690. DOI: https://doi.org/10.1007/s41062-019-0243-y
Brinkgreve, R. B. J., & Borer, W. (2006). Plaxis Dynamics Manual (v 8.5). Delft University of Technology and Plaxis bv, Netherlands
Özhan, H. O., Bayat, E. E., & Zanjani, E. Y (2016, September). Dynamic Analysis of Buried Pipelines with Geogrid Reinforcement.
Aldelfee, A. N., Aldefae, A. H., & Zubaidi, S. L. (2021). Numerical modelling of seismic performance of gravity quay wall. Materials Science and Engineering, 1058, 1-8. DOI: https://doi.org/10.1088/1757-899X/1058/1/012038
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Wasit Journal of Engineering Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.