Evaluating the effect of non-Newtonian turbulent blood models within a double-stenosed artery

Authors

  • Mohammed Ghalib Al-Azawy Doctor, Mechanical Eng.Dept - Wasit University

DOI:

https://doi.org/10.31185/ejuow.Vol9.Iss2.233

Keywords:

artery stenosis, computational fluid dynamics, non-Newtonian fluid flow, laminar flow.

Abstract

This article describes the numerical investigation of blood rheology within an artery that includes two narrowing areas via Computational Fluid Dynamics (CFD). Elliptic blending Reynolds stress model and two models of viscosity have been used in this investigation utilizing STAR-CCM+ 2021.2.1. The test model includes two elliptical stenosis with a 2mm distance between them, and the area of stenosis is 75%. Results of normalized axial velocity, turbulent kinetic energy (TKE) and turbulent viscosity ratio (TVR) were evaluated before, through and after the stenosis in order to predict and avoid the real problems that occur from changing the area of the artery. Furthermore, Fractional flow reserve (FFR) was employed to assess the level of risk of stenosis through the artery, which depends on pressure measurements. Corresponding to the author's observation, it was found that the recirculation regions in the area between the stenosis are larger than the area after the stenosis. Moreover, the results of TKE and TVR are almost identical through and downstream of the stenosis, whereas the TKE is slightly higher with the Carreau model than with the Newtonian flow at the upstream and through the first stenosis.

References

FRY, D. L. (1968) Acute Vascular Endothelial Changes Associated with Increased Blood Velocity Gradients. DOI: https://doi.org/10.1161/01.RES.22.2.165

Ethier, C. R., & Simmons, C. A. (2008) Introductory Biomechanics From Cells to Organisms. Cambridge University Press,. DOI: https://doi.org/10.1017/CBO9780511809217

Berger, S. A., & Jou, L.-D. (2000) Flows in stenotic vessels. Annu. Rev. Fluid Mech, 32, 347–382. DOI: https://doi.org/10.1146/annurev.fluid.32.1.347

Huang, C. R., Pan, W. D., Chen, H. Q., & Copley, A. L. (1987) Thixotropic properties of whole blood from healthy human subjects. Biorheology, 24(6), 795–801. https://doi.org/10.3233/BIR-1987-24630 DOI: https://doi.org/10.3233/BIR-1987-24630

Al-Azawy, M. G., Kadhim, S. K., & Hameed, A. S. (2020) Newtonian and non-newtonian blood rheology inside a model of stenosis. CFD Letters, 12(11), 27–36. https://doi.org/10.37934/cfdl.12.11.2736 DOI: https://doi.org/10.37934/cfdl.12.11.2736

Kadhim, S. K., Al-Azawy, M. G., Ali, S. A. G., & Kadhim, M. Q. (2021) The influence of non-Newtonian model on properties of blood flow through a left coronary artery with presence of different double stenosis. International Journal of Heat and Technology, 39(3), 895–905. https://doi.org/10.18280/ijht.390324 DOI: https://doi.org/10.18280/ijht.390324

Neofytou, P., & Drikakis, D. (2003) Effects of blood models on flows through a stenosis. International Journal for Numerical Methods in Fluids, 43(6–7), 597–635. https://doi.org/10.1002/fld.496 DOI: https://doi.org/10.1002/fld.496

Paul, M. C., Mamun Molla, M., & Roditi, G. (2009) Large-Eddy simulation of pulsatile blood flow. Medical Engineering and Physics, 31(1), 153–159. https://doi.org/10.1016/j.medengphy.2008.04.014 DOI: https://doi.org/10.1016/j.medengphy.2008.04.014

Mamun Molla, M., Paul, M. C., & Roditi, G. (2010) LES of additive and non-additive pulsatile flows in a model arterial stenosis. Computer Methods in Biomechanics and Biomedical Engineering, 13(1), 105–120. https://doi.org/10.1080/10255840903062545 DOI: https://doi.org/10.1080/10255840903062545

Rabby, M. G., Shupti, S. P., & Molla, M. M. (2014) Pulsatile Non-Newtonian Laminar Blood Flows through Arterial Double Stenoses. Journal of Fluids, 2014, 1–13. https://doi.org/10.1155/2014/757902 DOI: https://doi.org/10.1155/2014/757902

Al-Azawy, M. G., Turan, A., & Revell, A. (2016) Assessment of turbulence models for pulsatile flow inside a heart pump. Computer methods in biomechanics and biomedical engineering, 19(3), 271–285. https://doi.org/10.1080/10255842.2015.1015527

Al-Azawy, M. G., Turan, A., & Revell, A. (2017) Investigating the impact of non-Newtonian blood models within a heart pump. International Journal for Numerical Methods in Biomedical Engineering, 33(1), e02780 (1-18). https://doi.org/10.1002/cnm DOI: https://doi.org/10.1002/cnm.2780

Pijls, N. H. J., Van Son, J. A. M., Kirkeeide, R. L., De Bruyne, B., & Gould, K. L. (1993) Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation, 87(4), 1354–1367. https://doi.org/10.1161/01.cir.87.4.1354 DOI: https://doi.org/10.1161/01.CIR.87.4.1354

Skopalik, S., Hall Barrientos, P., Matthews, J., Radjenovic, A., Mark, P., Roditi, G., & Paul, M. C. (2021) Image-based computational fluid dynamics for estimating pressure drop and fractional flow reserve across iliac artery stenosis: A comparison with in-vivo measurements. International Journal for Numerical Methods in Biomedical Engineering, (January), 1–19. https://doi.org/10.1002/cnm.3437 DOI: https://doi.org/10.1002/cnm.3437

Gashi, K., Bosboom, E. M. H., & van de Vosse, F. N. (2018) The influence of model order reduction on the computed fractional flow reserve using parameterized coronary geometries. Journal of Biomechanics, 82, 313- 323. https://doi.org/10.1016/j.jbiomech.2018.11.008 DOI: https://doi.org/10.1016/j.jbiomech.2018.11.008

Hoque, K. E., Ferdows, M., Sawall, S., & Tzirtzilakis, E. E. (2020) The effect of hemodynamic parameters in patient-based coronary artery models with serial stenoses: normal and hypertension cases. Computer Methods in Biomechanics and Biomedical Engineering, 23(9), 467–475. https://doi.org/10.1080/10255842.2020.1737028 DOI: https://doi.org/10.1080/10255842.2020.1737028

Simcenter. (2021) STAR-CCM+, user guide version 2021.2.1 (16.04.012-R8).

Versteeg, H. K., & Malalasekera, W. (2007) An Introduction to Computational Fluid Dynamics THE FINITE VOLUME METHOD.

Molla, M. M., & Paul, M. C. (2012) LES of non-Newtonian physiological blood flow in a model of arterial stenosis. Medical engineering & physics, 34(8), 1079–1087. https://doi.org/10.1016/j.medengphy.2011.11.013 DOI: https://doi.org/10.1016/j.medengphy.2011.11.013

Johnston, B. M., Johnston, P. R., Corney, S., & Kilpatrick, D. (2004) Non-Newtonian blood flow in human right coronary arteries: steady state simulations. Journal of biomechanics, 37(5), 709–720. https://doi.org/10.1016/j.jbiomech.2003.09.016 DOI: https://doi.org/10.1016/j.jbiomech.2003.09.016

Carreau, P. J. (1972) Rheological Equations from Molecular Network Theories. Journal of Rheology, 16(1), 99–127. https://doi.org/10.1122/1.549276 DOI: https://doi.org/10.1122/1.549276

Manceau, R., & Hanjalić, K. (2002) Elliptic blending model: A new near-wall Reynolds-stress turbulence closure. Physics of Fluids, 14(2), 744. https://doi.org/10.1063/1.1432693 DOI: https://doi.org/10.1063/1.1432693

Lardeau, S., & Manceau, R. (2014) computations of complex flow configurations using a modified elliptic - Blending Reynolds - Stress model. 10th International ERCOFTAC Symposium on Engineering Turbu- lence Modelling and Measurements, hal-010517.

Al-Azawy, M. G., Turan, A., & Revell, A. (2015) Assessment of turbulence models for pulsatile flow inside a heart pump. Computer methods in biomechanics and biomedical engineering, (March), 1–15. https://doi.org/10.1080/10255842.2015.1015527 DOI: https://doi.org/10.1080/10255842.2015.1015527

Hariharan, P., Giarra, M., Reddy, V., Day, S. W., Manning, K. B., Deutsch, S., … Malinauskas, R. A. (2011) Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations. Journal of Biomechanical Engineering, 133(4), 1–14. https://doi.org/10.1115/1.4003440 DOI: https://doi.org/10.1115/1.4003440

Downloads

Published

2021-12-31

Issue

Section

Mechanical Engineering

How to Cite

Al-Azawy, M. G. (2021). Evaluating the effect of non-Newtonian turbulent blood models within a double-stenosed artery. Wasit Journal of Engineering Sciences, 9(2), 9-19. https://doi.org/10.31185/ejuow.Vol9.Iss2.233