The Effect of Different Absorber Configurations On The Exergy and The Energy of Parabolic Solar Dish

Authors

  • A'laa Taghi Al-Azawi
  • Ali A. F. Al Hamadani

DOI:

https://doi.org/10.31185/ejuow.Vol7.Iss3.133

Keywords:

Parabolic dish collector; exergy efficiency; spiral –helical coil (SHC); spiral-conical coil (SCC)

Abstract

Abstract— The solar energy is the most important type of energy. The parabolic dish solar collector (PDSC) is the best type among other solar collectors because it is always tracking the sun movement. The exergy and the energy performances of a PDS were analyzed experimentally and numerically. The effect of different coil geometries and different mass flow rates of heat transfer fluid (HTF) were investigated. The PDS has parabolic dish and receiver with diameter (1.5) m and (0.2) m respectively. Concentration ratio is 56.25. The parabolic polar dish was supported by a tracking system with two axes. The types of the copper absorber were used which are: (spiral –helical) coil (SHC) and spiral-conical coil (SCC). The results showed that the useful energy and thermal efficiency are varying with solar radiation variation. The useful energy varying between (480-765) W for (SHC), the thermal efficiency varying between (35.2-39.8) % for (SHC). Exergy efficiency varying between (6.9 –8.6) %. It was shown that the higher values of useful energy for (spiral – helical) absorber was 0.1L/min flow rate.

REFERENCES 

1. T. Taumoefolau , K. Lovegrove ," An Experimental Study of Natural Convection Heat Loss from a Solar Concentrator Cavity Receiver at Varying Orientation. ", Australian National University,, Canberra ACT 0200 AUSTRALIA.2002 

2. S. PAITOONSURIKARN and K. LOVEGROVE," On the Study of Convection Loss from Open Cavity Receivers in Solar Paraboloidal Dish Applications ", Australian National University Canberra ACT 0200, AUSTRALIA, pp 154,155,2003 

3. Soteris A. Kalogirou*,"Solar thermal collectors and applications", Higher Technical Institute, Progress in Energy and Combustion Science 30 (2004) 231–295, pp237, 240, 241, 2004 

4. M. Prakash, S.B. Kedare, J.K. Nayak," Investigations on heat losses from a solar cavity receiver", Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India,2008. 

5. Shiva Gorjian1, Barat Ghobadian1, Teymour Tavakkoli Hashjin1, and Ahmad Banak ,"Thermal performance of a Point-focus Solar Steam Generating System ", 21st Annual International Conference on Mechanical Engineering-ISME201 7-9 May, 2013, School of Mechanical Eng., K.N.Toosi University, Tehran, Iran ,1ISME2013-1195,2013 

6. Kailash Karunakaran1 Hyacinth J Kennady2 ,"Thermal Analysis of Parabolic Dish Snow Melting Device " ,International Journal for Research in Technological Studies| Vol. 1, Issue 3, February 2014 | ISSN (online): 2348-1439,2014 

7. Charles-Alexis Asselineau, Ehsan Abbasi, John Pye "Open cavity receiver geometry influence on radiative losses" Australian National University (ANU), Canberra, ACT 0200 Australia. Solar2014: The 52nd Annual Conference of the Australian Solar Council 2014 

8. Vahid Madadi, Touraj Tavakoli and Amir Rahimi First and second thermodynamic law analyses applied to a solar dish collector" DOI 10.1515/jnet-2014-0023 | J. Non-Equilib. Thermodyn. 2014; 39 (4):183–197 

9. Yaseen. H. Mahmood , Mayadah K h. Ghaffar " Design of Solar dish concentration by using MATLAB program and Calculation of geometrical concentration parameters and heat transfer" , University of Tikrit , Tikrit , Iraq, Tikrit Journal of Pure Science 20 (4) ISSN: 1813 – 1662, 2015. 

10. Vanita Thakkar, Ankush Doshi, Akshaykumar Rana "Performance Analysis Methodology for Parabolic Dish Solar Concentrators for Process Heating Using Thermic Fluid IOSR", Journal of Mechanical and Civil Engineering (IOSR-JMCE) eISSN: 2278-1684,p-ISSN: 2320-334X, Volume 12, Issue 1 Ver. II (Jan- Feb. 2015), PP 101-114 

11. Saša R. pavlovi, Evangelos A. bellos, Velimir P. Stefanovi, Christos Tzivanidis and Zoran M. Stamenkovi "Design, Simulation ,and Optimiztion Of A Solar Dish Collector with spiral coil absorber ", , Nis, Serbia, thermal SCIENCE, Vol. 20, No. 4, pp. 1387-1397 1387,2016 

12. Flávia V. Barbosa, João L. Afonso, Filipe B. Rodrigues, and José C. F. Teixeir," Development of a solar concentrator with tracking system", University of Minho,Guimarães, 4800-058, Portugal2016 

13. O. López, A. Arenas, and A. Baños"Convective Heat Loss Analysis of a Cavity Receiver for a Solar Concentrator" International Conference on Renewable Energies and Power Quality (ICREPQ’17)Malaga (Spain), 4th to 6th April, 2017 ,ISSN 2172-038 X, No.15 April 2017 RE&PQJ, Vol.1, No.15, April 2017 

14. D.R.Rajendran,E.GanapathySundaram,P.Jawahar "Experimental Studies on the Thermal Performance of a Parabolic Dish Solar Receiver with the Heat Transfer Fluids Sic water Nano Fluid and Water", Journal of Thermal Science Vol.26, 

15. Muhammad Shoaib, Muhammad , Jameel Kabbir Ali ,Muhammad Usman1, Abdul Hannan " Analysis of thermal performance of parabolic dish collectors having different reflective" ,NFC institute of engineering &fertilizer research ,2018 . 

16. Sasa PAVLOVIC, Evangelos BELLOS, Velimir STEFANOVIC ,Christos TZIVANIDIS " EXPERIMENTAL AND NUMERICAL INVESTIGATION OF A SOLAR DISH COLLECTOR WITH SPIRAL ABSORBER" A CTA TECHNICA CORVINIENSIS – Bulletin of Engineering Tome XI [2018] . 

 

Downloads

Download data is not yet available.

Author Biographies

A'laa Taghi Al-Azawi

Department of mechanical engineering, postgraduate student (MSc.), College of engineering, Wasit University

Ali A. F. Al Hamadani

Asst. Prof., Department of mechanical, College of engineering, Wasit University

References

REFERENCES
1. T. Taumoefolau , K. Lovegrove ," An Experimental Study of Natural Convection Heat Loss from a Solar Concentrator Cavity Receiver at Varying Orientation. ", Australian National University,, Canberra ACT 0200 AUSTRALIA.2002
2. S. PAITOONSURIKARN and K. LOVEGROVE," On the Study of Convection Loss from Open Cavity Receivers in Solar Paraboloidal Dish Applications ", Australian National University Canberra ACT 0200, AUSTRALIA, pp 154,155,2003
3. Soteris A. Kalogirou*,"Solar thermal collectors and applications", Higher Technical Institute, Progress in Energy and Combustion Science 30 (2004) 231–295, pp237, 240, 241, 2004
4. M. Prakash, S.B. Kedare, J.K. Nayak," Investigations on heat losses from a solar cavity receiver", Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India,2008.
5. Shiva Gorjian1, Barat Ghobadian1, Teymour Tavakkoli Hashjin1, and Ahmad Banak ,"Thermal performance of a Point-focus Solar Steam Generating System ", 21st Annual International Conference on Mechanical Engineering-ISME201 7-9 May, 2013, School of Mechanical Eng., K.N.Toosi University, Tehran, Iran ,1ISME2013-1195,2013
6. Kailash Karunakaran1 Hyacinth J Kennady2 ,"Thermal Analysis of Parabolic Dish Snow Melting Device " ,International Journal for Research in Technological Studies| Vol. 1, Issue 3, February 2014 | ISSN (online): 2348-1439,2014
7. Charles-Alexis Asselineau, Ehsan Abbasi, John Pye "Open cavity receiver geometry influence on radiative losses" Australian National University (ANU), Canberra, ACT 0200 Australia. Solar2014: The 52nd Annual Conference of the Australian Solar Council 2014
8. Vahid Madadi, Touraj Tavakoli and Amir Rahimi First and second thermodynamic law analyses applied to a solar dish collector" DOI 10.1515/jnet-2014-0023 | J. Non-Equilib. Thermodyn. 2014; 39 (4):183–197
9. Yaseen. H. Mahmood , Mayadah K h. Ghaffar " Design of Solar dish concentration by using MATLAB program and Calculation of geometrical concentration parameters and heat transfer" , University of Tikrit , Tikrit , Iraq, Tikrit Journal of Pure Science 20 (4) ISSN: 1813 – 1662, 2015.
10. Vanita Thakkar, Ankush Doshi, Akshaykumar Rana "Performance Analysis Methodology for Parabolic Dish Solar Concentrators for Process Heating Using Thermic Fluid IOSR", Journal of Mechanical and Civil Engineering (IOSR-JMCE) eISSN: 2278-1684,p-ISSN: 2320-334X, Volume 12, Issue 1 Ver. II (Jan- Feb. 2015), PP 101-114
11. Saša R. pavlovi, Evangelos A. bellos, Velimir P. Stefanovi, Christos Tzivanidis and Zoran M. Stamenkovi "Design, Simulation ,and Optimiztion Of A Solar Dish Collector with spiral coil absorber ", , Nis, Serbia, thermal SCIENCE, Vol. 20, No. 4, pp. 1387-1397 1387,2016
12. Flávia V. Barbosa, João L. Afonso, Filipe B. Rodrigues, and José C. F. Teixeir," Development of a solar concentrator with tracking system", University of Minho,Guimarães, 4800-058, Portugal2016
13. O. López, A. Arenas, and A. Baños"Convective Heat Loss Analysis of a Cavity Receiver for a Solar Concentrator" International Conference on Renewable Energies and Power Quality (ICREPQ’17)Malaga (Spain), 4th to 6th April, 2017 ,ISSN 2172-038 X, No.15 April 2017 RE&PQJ, Vol.1, No.15, April 2017
14. D.R.Rajendran,E.GanapathySundaram,P.Jawahar "Experimental Studies on the Thermal Performance of a Parabolic Dish Solar Receiver with the Heat Transfer Fluids Sic water Nano Fluid and Water", Journal of Thermal Science Vol.26,
15. Muhammad Shoaib, Muhammad , Jameel Kabbir Ali ,Muhammad Usman1, Abdul Hannan " Analysis of thermal performance of parabolic dish collectors having different reflective" ,NFC institute of engineering &fertilizer research ,2018 .
16. Sasa PAVLOVIC, Evangelos BELLOS, Velimir STEFANOVIC ,Christos TZIVANIDIS " EXPERIMENTAL AND NUMERICAL INVESTIGATION OF A SOLAR DISH COLLECTOR WITH SPIRAL ABSORBER" A CTA TECHNICA CORVINIENSIS – Bulletin of Engineering Tome XI [2018] .
17. Vahid Madadi, Touraj Tavakoli and Amir Rahimi," First and second thermodynamic law analyses applied to
a solar dish collector" DOI 10.1515/jnet-2014-0023 | J. Non-Equilib. Thermodyn. 2014; 39 (4):183–197
18. Atul Sagade ,Nilkanth Shinde "Performance evaluation of parabolic dish type solar collector for industrial heating application"Int. J. Energy Technology and Policy, Vol. 8, No. 1, 2012
19. S.K. Tyagi, Shengwei Wang, M.K. Singhal, S.C. Kaushik ,S.R.Park "Exergy analysis and parametric study of concentrating type solar collectors" International Journal of Thermal Sciences 46 (2007) 1304–1310
20. Lloyd C. Ngo," Exergetic Analysis and Optimization of a Parabolic Dish Collector for Low Power Application" ,University of Pretoria , November 2012, https://www.researchgate.net/publication/304775136

Published

2020-04-11

How to Cite

A’laa Taghi Al-Azawi, & Ali A. F. Al Hamadani. (2020). The Effect of Different Absorber Configurations On The Exergy and The Energy of Parabolic Solar Dish. Wasit Journal of Engineering Sciences, 7(3), 1-13. https://doi.org/10.31185/ejuow.Vol7.Iss3.133

Issue

Section

Mechanical Engineering