Using of Deep Learning in Beamforming Antenna Array
DOI:
https://doi.org/10.31185/ejuow.Vol12.Iss4.564Keywords:
deep learning; digital beamforming;Abstract
Digital beamforming (DBF) is a crucial technology for large antenna arrays, offering precise control over beam steering. This research introduces a novel method to enhance millimeter wave transmission by incorporating DBF with long-term memory (LSTM) based deep learning Our system utilizes digital signal processing and LSTM networks to optimize beamforming parameters instead of relying on traditional analog beamforming. The objective is to achieve high spectral efficiency. The methodology is executed in the programming language MATLAB and the obtained simulation outcomes validate a substantial enhancement in the metrics that evaluate performance, thereby demonstrating the potential of combining digital beamforming (DBF) with Long Short-Term Memory (LSTM) for forthcoming communication systems. Furthermore, the inclusion of LSTM in the process of digital beamforming presents a comprehensive comprehension of the proposed approach, which imparts valuable insights for advanced communication technologies. To substantiate the efficacy of the technique, several illustrative examples are employed to steer the beam pattern in the desired direction.
References
R. C. Hansen, “Phased array antennas,” John Wiley & Sons, (Vol. 213). 2009.
I. Uchendu, and J. R. Kelly, “Survey of beam steering techniques available for millimeter wave applications,” Progress in Electromagnetics Research B, vol. 68, pp. 35-54. 2016
M. Afzal, and K. Esselle, “Steering the beam of medium-to-high gain antennas using near-field phase transformation,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 4, pp. 1680-1690. 2017
L. Godara, "Smart Antennas”. Boca Raton, FL, USA: CRC Press, 2004.
F. B. Gross, “Smart Antennas for Wireless Communications with MATLAB”. New York, NY, USA, 2005.
D. D. Feldman and L. J. Griffths,. “A projection approach for robust adaptive beamforming,'' IEEE Trans. Signal Process., vol. 42, no. 4, pp. 867-876. 1994
K. R. Mahmoud, and A. M. Montaser, “Design of dual-band circularly polarised array antenna package for 5G mobile terminals with beamsteering capabilities,” IET Microwaves, Antennas & Propagation, vol. 12, no. 1, pp. 29-39. 2018
K. R. Mahmoud and A. M. Montaser ‘‘Synthesis of multi-polarised upside conical frustum array antenna for 5G Mm-Wave base station at 28/38 GHz,’’ IET Microw., Antennas Propag., vol. 12, no. 9, pp. 1559–1569, 2018
K. R. Mahmoud and A. M. Montaser, ‘‘Performance of tri-band multipolarized array antenna for 5G mobile base station adopting polarization and directivity control,’’ IEEE Access, vol. 6, pp. 8682– 8694. 2018
K. Mahmoud, W. Alhakami, H. Alhakami, and A. Montaser, “The Performance of Circularly Polarized Phased SubArray Antennas for 5G Laptop Devices Investigating the Radiation Effects,” Progress in Electromagnetics Research C, vol. 110, pp. 267283. 2021
K. Yan, and Y. Lu, “Side lobe reduction in array-pattern synthesis using genetic algorithm,” IEEE Transactions on Antennas and Propagation, vol. 45, no. 7, pp. 1117-1122. 2007
K.Mahmoud, M.Eladawy, R. Bansal, S. Zainud‐Deen, and S. Ibrahim, “Analysis of uniform circular arrays for adaptive beamforming applications using particle swarm optimization algorithm,” International Journal of RF and Microwave Computer Aided Engineering, vol. 18, no. 1, pp. 42-52. 2008
E. Amed, K. R. Mahmoud, S. Hamad, and, Z. T. Fayed, “Real time parallel PSO and CFO for adaptive beam-forming applications,” In PIERS Proceedings, pp. 25-28. 2013
K. Mahmoud and S. Hamad, “Parallel implementation of hybrid GSA-NM algorithm for adaptive beam-forming applications,” Progress in Electromagnetics Research B, vol. 58, pp. 47-57. 2014
K. Mahmoud, “Synthesis of unequally‐spaced linear array using modified central force optimization algorithm,” IET Microwaves, Antennas & Propagation, vol. 10, no. 10, pp. 1011-1021. 2016
Z. D. Zaharis et al. “Implementation of antenna array beamforming by using a novel neural network structure,” 2016 Int. Conf. Telecommun. Multimedia (TEMU), pp. 1-5. 2016
P. Ramezanpour and M. Mosavi, “Two-stage beamforming for rejecting interferences using deep neural networks,” IEEE Syst. J., vol. 15, no. 3, pp. 4439-4447. 2021
J. Papari, H. R. Dalili Oskouei, and A. Keshavarz, “Robust adaptive beamforming algorithm based on sampling function neural network,” 2nd Int. Conf. Control, Instrum. Autom., pp. 1187-1192. 2011
M. Ünlerşen and E. Yaldiz, “Direction of arrival estimation by using artificial neural networks,” Europ. Model. Symp., pp. 242-245. 2016
A. Farsaei, A. Sheikh, U. Gustavsson, A. Alvarado, and F. M. J. Willems, “DropNet: An improved dropping algorithm based on neural networks for line-of-sight massive MIMO,” IEEE Access, vol. 9, pp.29441-29448. 2021
R. Lovato and X. Gong, 2019 “Phased antenna array beamforming using convolutional neural networks,” IEEE Int. Symp. Antennas Propag. & USNCURSI Radio Sci. Meeting, pp. 1247-1248. 2019
J. Hu, Z. Liu, and Lihan, 2020 “Multi-source classification: A DOA-based deep learning approach,” . Conf. Computer Engr. Appl. (ICCEA), pp. 463-467. 2020
M. Chen, Y. Gong and X. Mao, “Deep neural network for estimation of direction of arrival with antenna array,” IEEE Access, vol. 8, pp.140688-140698. 2020
T. Maksymyuk, O. Yaremko, and D. Nevinskiy, “Deep learning based massive MIMO beamforming for 5G mobile network,” IEEE 4th Int. Symp. Wireless Syst. – Int. Conf. Intel. Data Acquisition Adv. Computing Syst. (IDAACS-SWS), pp. 241-244. 2018
H. Tauqir and A. Habib, “Deep learning-based beam allocation in switched-beam multiuser massive MIMO systems,” 2nd Int. Conf. Latest Trends Electr. Engr. Computing Technol., pp. 1-5. 2019
A. A. Nair, A. Reiter, and M. A. Lediju Bell, “A deep learning based alternative to beamforming ultrasound images,” IEEE Int. Conf. Acoustics, Speech, Signal Process. (ICASSP), pp. 3359-3363. 2018
A. A. Nair, M. R. Gubbi, T. Duy Tran, A. Reiter, and M. A. Lediju Bell, 2018 “A fully convolutional neural network for beamforming ultrasound images,” IEEE Int. Ultras. Symp., pp. 1-4. 2018
S. E. El-Khamy, K. H. Moussa, and A. A. El-Sherif, “Capacity maximized transmitter antenna selection for multi-user massive MIMO systems with linear beamforming,” in 2016 33rd National Radio Science Conference (NRSC), Aswan, Egypt. 2016.
Kwon, H. J., Lee, J. H., & Choi, W. Machine learning-based beamforming in K-user MISO interference channels. IEEE Access, 9, 28066-28075. 2021.
Jwo D-J, Biswal A, Mir IA,” Artificial Neural Networks for Navigation Systems”. A Review of Recent Research. Applied Sciences.; 13(7):4475. https://doi.org/10.3390/app13074475 2023.
Staudemeyer, R. C., & Morris, E. R. Understanding LSTM--a tutorial into long short-term memory recurrent neural networks. arXiv preprint arXiv:1909.09586. 2019
Gers, F. A., Schmidhuber, J., & Cummins, F. Learning to forget: Continual prediction with LSTM. Neural computation, 12(10), 2451-2471. 2000.
Madhubabu, D., & Thakre, A. Long-short term memory based channel prediction for SISO system. In 2019 International Conference on Communication and Electronics Systems (ICCES) (pp. 1-5). IEEE. (2019, July).
Kawitkar, R. S., & Wakde, D. G.). Smart antenna array analysis using LMS algorithm. In 2005 IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (Vol. 1, pp. 370-374). IEEE. 2005, August.
A. A. Naji, T. M. Jamel and H. F. Khazaal, "Review of: Deep Learning (DL) for Beamforming Array (BFA) Antenna," 2024 21st International Multi-Conference on Systems, Signals & Devices (SSD), Erbil, Iraq, pp. 49-56, doi: 10.1109/SSD61670.2024.10549490, 2024.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Ali Naji, Dr.Thamer M. Jamel, Dr.Hassan F. khazaal

This work is licensed under a Creative Commons Attribution 4.0 International License.