Agriculture Based on Wireless Sensor Network: Literature Survey

Authors

  • zahraa Al Jebory طالبه في قسم هندسة الكهرباء كلية الهندسه الجامعه المستنصريه
  • Abbas H. Miry Electrical Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, Iraq
  • Gregor A. Aramice Electrical Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, Iraq

DOI:

https://doi.org/10.31185/ejuow.Vol12.Iss4.610

Keywords:

Wireless Sensor Networks, Internet of Things, Artificial Intelligence, Light Dependent Resistor

Abstract

This manuscript provides an extensive review of the existing literature regarding the confluence of Wireless Sensor Networks (WSN) and Internet of Things (IoT) innovations in the field of Agriculture. The investigation delves into a variety of systems and frameworks crafted to elevate agricultural methodologies through immediate surveillance and oversight of ecological factors. Essential elements encompass the deployment of diverse sensors, including those for soil moisture, temperature, and humidity, which are vital for refining irrigation practices and promoting effective water utilization. The manuscript underscores the significance of microcontrollers such as Arduino and Raspberry Pi in managing and relaying information to central hubs or cloud platforms for distant access and governance via mobile interfaces. Furthermore, the study addresses the applications of communication protocols like LoRa, ZigBee, and Wi-Fi, which enable extensive and efficient data relay. The incorporation of machine learning strategies for distinguishing crops and weeds, along with the utilization of solar energy to power sensor units, is also scrutinized. The manuscript wraps up by highlighting the transformative potential of IoT and WSN technologies in modernizing smart agriculture, providing avenues for energy-efficient and automated farming solutions.

References

Kamath R, Balachandra M, Prabhu S. Raspberry Pi as Visual Sensor Nodes in Precision Agriculture: A Study. IEEE Access. 2019;7:45110-45122. doi:10.1109/ACCESS.2019.2908846.

Kumar V, Sharma KV, Kedam N, Patel A, Kate TR, Rathnayake U. A comprehensive review on smart and sustainable agriculture using IoT technologies. Smart Agric Technol. 2024;8:100487. doi:10.1016/j.atech.2024.100487.

Madau FA, Arru B, Furesi R, Pulina P. Insect farming for feed and food production from a circular business model perspective. Sustain. 2020;12(13). doi:10.3390/su12135418.

Ahmad P, Wani MR. Physiological mechanisms and adaptation strategies in plants under changing environment: Volume 1. Physiol Mech Adapt Strateg Plants Under Chang Environ Vol 1. 2014;1:1-376. doi:10.1007/978-1-4614-8591-9.

Doshi J, Patel T, Bharti SK. Smart Fanning using IoT, a solution for optimally monitoring fanning conditions. Procedia Comput Sci. 2019;160:746-751. doi:10.1016/j.procs.2019.11.016.

Goel RK, Yadav CS, Vishnoi S, Rastogi R. Smart agriculture – Urgent need of the day in developing countries. Sustain Comput Informatics Syst. 2021;30(August 2020):100512. doi:10.1016/j.suscom.2021.100512.

Muhammad Z, Hafez MAAM, Leh NAM, Yusoff ZM, Hamid SA. Smart Agriculture Using Internet of Things with Raspberry Pi. Proc - 10th IEEE Int Conf Control Syst Comput Eng ICCSCE 2020. Published online 2020:85-90. doi:10.1109/ICCSCE50387.2020.9204927.

Kamaruddin F, Malik NNNA, Murad NA, Latiff NM azzah A, Yusof SKS, Hamzah SA. IoT-based intelligent irrigation management and monitoring system using arduino. Telkomnika (Telecommunication Comput Electron Control. 2019;17(5):2378-2388. doi:10.12928/TELKOMNIKA.v17i5.12818.

Amu D. Automated Irrigation using Arduino sensor based on IOT. 2019 Int Conf Comput Commun Informatics. Published online 2019:1-6.

Mowla MN, Mowla N, Shah AFMS, Rabie KM, Shongwe T. Internet of Things and Wireless Sensor Networks for Smart Agriculture Applications: A Survey. IEEE Access. 2023;11:145813-145852. doi:10.1109/ACCESS.2023.3346299.

Morchid A, El Alami R, Raezah AA, Sabbar Y. Applications of internet of things (IoT) and sensors technology to increase food security and agricultural Sustainability: Benefits and challenges. Ain Shams Eng J. 2024;15(3):102509. doi:10.1016/j.asej.2023.102509.

Atmaja AP, El Hakim, A, Wibowo APA, Pratama LA. Communication Systems of Smart Agriculture Based on Wireless Sensor Networks in IoT. J Robot Control. 2021;2(4). doi:10.18196/jrc.2495.

Giri A, Dutta S, Neogy S. Enabling agricultural automation to optimize utilization of water, fertilizer and insecticides by implementing Internet of Things (IoT). 2016 Int Conf Inf Technol InCITe 2016 - Next Gener IT Summit Theme - Internet Things Connect your Worlds. Published online 2017:125-131. doi:10.1109/INCITE.2016.7857603.

Tang P, Liang Q, Li H, Pang Y. Application of Internet-of-Things Wireless Communication Technology in Agricultural Irrigation Management: A Review. Sustain . 2024;16(9). doi:10.3390/su16093575.

Jindarat S, Wuttidittachotti P. Smart farm monitoring using Raspberry Pi and Arduino. I4CT 2015 - 2015 2nd Int Conf Comput Commun Control Technol Art Proceeding. 2015;(I4ct):284-288. doi:10.1109/I4CT.2015.7219582.

Khriji S, El Houssaini D, Kammoun I, Kanoun O. Precision Irrigation: An IoT-Enabled Wireless Sensor Network for Smart Irrigation Systems. Published online 2021:107-129. doi:10.1007/978-3-030-49244-1_6.

Trihandoyo A, Aristawati NR. Proceeding of 2 nd International Conference Designing Plant Monitoring System Using Arduino. Published online 2022:2022. doi:10.47841/icorad.v2i1.84.

Jain RK. Experimental performance of smart IoT-enabled drip irrigation system using and controlled through web-based applications. Smart Agric Technol. 2023;4:100215. doi:10.1016/j.atech.2023.100215.

Ogunbiyi TEA, Adegoke MA, Abogunrin A, Ogunsola K, Adesemowo K. Contextual use of a Smart Farm Irrigation System using Internet of Things ( IoT ). Published online 2023:1-20.

- GV, - SS, - RK, - ZAK. IoT Based Agriculture Monitoring System. Int J Multidiscip Res. 2023;5(6):1-8. doi:10.36948/ijfmr.2023.v05i06.8802.

Natonis MM, Manu LLK, Amleni PMC, Nababan D, Kelen YP., Sucipto W. Smart Greenhouse Design Based Internet of Things (IoT) With Microcontroller Arduino Uno. J Tek Inform. 2023;16(1):35-44. doi:10.15408/jti.v16i1.30889.

Effah E, Thiare O, Wyglinski AM. Hardware Evaluation of Cluster-Based Agricultural IoT Network. IEEE Access. 2024;12:33628-33651. doi:10.1109/ACCESS.2024.3370230.

Hosny KM, El-Hady WM, Samy FM. Technologies, Protocols, and applications of Internet of Things in greenhouse Farming: A survey of recent advances. Inf Process Agric. Published online April 2024. doi:10.1016/j.inpa.2024.04.002.

Mandal S, Yadav A, Panme FA, Devi KM, Kumar S.M. S. Adaption of smart applications in agriculture to enhance production. Smart Agric Technol. 2024;7. doi:10.1016/j.atech.2024.100431.

Sanz E, Trincado J, Martínez J, et al. Cloud-based system for monitoring event-based hydrological processes based on dense sensor network and NB-IoT connectivity. Environ Model Softw. 2024;182:106186. doi:10.1016/j.envsoft.2024.106186.

Et-taibi B, Abid MR, Boufounas EM, et al. Enhancing water management in smart agriculture: A cloud and IoT-Based smart irrigation system. Results Eng. 2024;22:102283. doi:10.1016/j.rineng.2024.102283.

Ting YT, Chan KY. Optimising performances of LoRa based IoT enabled wireless sensor network for smart agriculture. J Agric Food Res. 2024;16:101093. doi:10.1016/j.jafr.2024.101093.

Yamini B, G P, D K, M J, G J, G S U. Theoretical study and analysis of advanced wireless sensor network techniques in Internet of Things (IoT). Meas Sensors. 2024;33:101098. doi:10.1016/j.measen.2024.101098.

Parab MS. IoT Based Smart Agriculture Using Machine Learning. Interantional J Sci Res Eng Manag. 2024;08(05):1-5. doi:10.55041/ijsrem35175.

Sinha C. Smart Irrigation System using Arduino. Interantional J Sci Res Eng Manag. 2024;08(06):1-5. doi:10.55041/ijsrem35606.

Ali M, Imran M, Baig MS, et al. Intelligent Control Shed Poultry Farm System Incorporating With Machine Learning. IEEE Access. 2024;12(February):58168-58180. doi:10.1109/ACCESS.2024.3391822.

Garg A, Munoth P, Goyal R. Application of Soil Moisture Sensors in Agriculture: a Review. Proc Int Conf Hydraul . 2016;(December):8-10. https://www.researchgate.net/publication/311607215.

Bogena HR, Huisman JA, Oberdörster C, Vereecken H. Evaluation of a low-cost soil water content sensor for wireless network applications. J Hydrol. 2007;344(1-2):32-42. doi:10.1016/j.jhydrol.2007.06.032.

Román-Raya J, Ruiz-García I, Escobedo P, Palma AJ, Guirado D, Carvajal MA. Light-dependent resistors as dosimetric sensors in radiotherapy. Sensors (Switzerland). 2020;20(6). doi:10.3390/s20061568.

Pathmudi VR, Khatri N, Kumar S, Abdul-Qawy ASH, Vyas AK. A systematic review of IoT technologies and their constituents for smart and sustainable agriculture applications. Sci African. 2023;19:e01577. doi:10.1016/j.sciaf.2023.e01577.

Rayhana R, Xiao G, Liu Z. Internet of Things Empowered Smart Greenhouse Farming. IEEE J Radio Freq Identif. 2020;4(3):195-211. doi:10.1109/JRFID.2020.2984391.

Al-Sarawi S, Anbar M, Alieyan K, Alzubaidi M. Internet of Things (IoT) communication protocols: Review. In: 2017 8th International Conference on Information Technology (ICIT). IEEE; 2017:685-690. doi:10.1109/ICITECH.2017.8079928.

García L, Viciano-Tudela S, Sendra S, Lloret J. Practical Design of a WiFi-based Wireless Sensor Network for Precision Agriculture in Citrus Crops. 2022;(Winsys):107-114. doi:10.5220/0011355300003286.

Tang Y, Dananjayan S, Hou C, Guo Q, Luo S, He Y. A survey on the 5G network and its impact on agriculture: Challenges and opportunities. Comput Electron Agric. 2021;180(September 2020):105895. doi:10.1016/j.compag.2020.105895.

Damsgaard SB, Hernandez Marcano NJ, Norremark M, Jacobsen RH, Rodriguez I, Mogensen P. Wireless Communications for Internet of Farming: An Early 5G Measurement Study. IEEE Access. 2022;10(August):105263-105277. doi:10.1109/ACCESS.2022.3211096.

Avinash JL, Sunil Kumar KN, Arjun Kumar GB, Poornima GR, Gatti R, Santosh Kumar S. A Wireless Sensor Network Based Precision Agriculture. In: 2020 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT). IEEE; 2020:413-417. doi:10.1109/RTEICT49044.2020.9315578.

Farooq MS, Riaz S, Helou MA, Khan FS, Abid A, Alvi A. Internet of Things in Greenhouse Agriculture: A Survey on Enabling Technologies, Applications, and Protocols. IEEE Access. 2022;10:53374-53397. doi:10.1109/ACCESS.2022.3166634.

Vu VA, Cong Trinh D, TRUVANT TC, Dang Bui T. Design of automatic irrigation system for greenhouse based on LoRa technology. In: 2018 International Conference on Advanced Technologies for Communications (ATC). IEEE; 2018:72-77. doi:10.1109/ATC.2018.8587487.

Yang Y. Design and Application of Intelligent Agriculture Service System With LoRa-based on Wireless Sensor Network. In: 2020 International Conference on Computer Engineering and Application (ICCEA). IEEE; 2020:712-716. doi:10.1109/ICCEA50009.2020.00155.

Gutierrez S, Martinez I, Varona J, Cardona M, Espinosa R. Smart Mobile LoRa Agriculture System based on Internet of Things. In: 2019 IEEE 39th Central America and Panama Convention (CONCAPAN XXXIX). IEEE; 2019:1-6. doi:10.1109/CONCAPANXXXIX47272.2019.8977109.

Downloads

Published

2024-12-01

Issue

Section

Electrical Engineering

How to Cite

Al Jebory, zahraa, Abbas H. Miry, & Gregor A. Aramice. (2024). Agriculture Based on Wireless Sensor Network: Literature Survey. Wasit Journal of Engineering Sciences, 12(4), 171-190. https://doi.org/10.31185/ejuow.Vol12.Iss4.610