The effect of lateral intake slope on sedimentation transport
DOI:
https://doi.org/10.31185/ejuow.Vol12.Iss3.561Keywords:
lateral intake, Lateral intake, Separation zone, Fluent, Sedimentation.Abstract
References
Goudarzizadeh, R., Hedayat, N., & Jahromi, S. M. (2010). Three-dimensional simulation of flow pattern at the lateral intake in straight path, using finite-volume method. World Academy of Science, Engineering and Technology, 47, 656-661.
Barkdoll, B., Ettema, R., & Odgaard, A. (1999). Sediment control at lateral diversions: Limits and enhancements to vane use. Journal of Hydraulic Engineering, 125(8), 862-870.
Alomari, N. K., Yusuf, B., Mohammad, T. A., & Ghazali, A. H. (2018). Experimental investigation of scour at a channel junctions of different diversion angles and bed width ratios. Catena, 166, 10-20.
Casas, A. H. (2013). Experimental and theoretical analysis of flow and sediment transport in 90-degree fluvial diversions (Doctoral dissertation, Universitat Politècnica de Catalunya (UPC)).
Merufini, E., & Ashari, A. A. (2015). Numerical investigation of sedimentation problems in riverside pumping stations. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, 36(3), 1498-1507.
Tiwari, N. K., Sihag, P., & Das, D. (2022). Performance evaluation of tunnel type sediment excluder efficiency by machine learning. ISH Journal of Hydraulic Engineering, 28(sup1), 27-39.
Neary, V. S., Sotiropoulos, F., & Odgaard, A. J. (1999). Three-dimensional numerical model of lateral-intake inflows. Journal of Hydraulic Engineering, 125(2), 126-140.
Moghadam, M. K., Bajestan, M. S., & Sedghi, H. (2010). Sediment entry investigation at the 30 degree water intake installed at a trapezoidal channel. World Applied Sciences Journal, 11(1), 82-88.
Odgaard, A. J., & Wang, Y. (1991). Sediment management with submerged vanes. II: Applications. Journal of Hydraulic Engineering, 117, 284–302.
Mohammed, N. K. A. D. (2017). Modelling water and sediment flow in branching channel system. (Doctoral dissertation, Universiti Putra Malaysia).
Hilo, A. N. (2023). The Effects of submerged vanes inclination angle on sediment transport into sub-channel. Wasit Journal of Engineering Sciences, 11(1), 105-115.
SEPA. (2019). Engineering in the Water Environment Good Practice Guide: Intakes and outfalls. Robert Bray Associates and Royal Haskoning, Second edition, reference: WAT-SG-28.
Ezz-Aldeen Mohammad, M. (2020). Sedimentation and Its Challenge for Sustainability of Hydraulic Structures: A Case Study of Mosul Dam Pumping Station (Doctoral dissertation, Luleå tekniska universitet).
Al-Zubaidy, R., & Hilo, A. N. (2022). Numerical Study of Sedimentation and Flow Pattern at the Open Channel Intake. Wasit Journal of Engineering Sciences, 10(3), 105-122.
Hjulstrom, F. (1935). Studies of the morphological activity of rivers as illustrated by the river fyris, bulletin. Geological Institute Upsalsa, 25, 221-527.
Odgaard, A. J., & Spoljaric, A. (1986). Sediment control by submerged vanes. Journal of Hydraulic Engineering, 112(12), 1164-1180.
Odgaard A.J. and Wang Y. (1991) Sediment management with submerged vanes. I: Theory. Journal of Hydraulic Engineering, ASCE. 117, 267-283.
Teronpi, J., & Misra, U. K. (2015). Experimental investigation of local scour around submerged vanes. International journal of innovative research in advanced engineering, 2(7), 21-24.
Jamshidi, A., Farsadizadeh, D., & Dalir, A. H. (2016). Variations of flow separation zone at lateral intakes entrance using submerged vanes. J. Civil Engin. Urban, 6(3), 54-63.
Abdel Haleem, F., Helal, Y., Ibrahim, S., & Sobeih, M. (2008). Sediment control at river intakes using a single row of vanes. Ain Shams Journal of Civil Engineering, 2, 395-401.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Saja Z. Al-Sabea, Ali N. Hilo
This work is licensed under a Creative Commons Attribution 4.0 International License.