Intelligent Reconfigurable surface technique for Multiple Antenna Communication System

Authors

  • Noor Qasim wasit university
  • Ismail Hburi
  • Haider Salih Al Ammar

DOI:

https://doi.org/10.31185/ejuow.Vol12.Iss3.507

Keywords:

Keywords: digital to analog pre-coding, intelligent recon-figure able surface (IRS), minimum mean squared error pre-coder (MMSE), Matching pursuit (sparse approximation) method

Abstract

The throughput growth of the coming wireless communication schemes requires the deployment of more base stations at a lower power use. We were inspired by the newly recommended intelligent reconfigurable surface technique (IRS) to address this issue. Specifically, this article mainly concerns the joint pre-coding scheme design challenge concerning improving the output at the base station (or the access point) and IRS stages. An iteration strategy called MMSE-MP has been developed, procedures a minimum mean squared error pre-coder (MMSE) approach for the Digital-BF and the Matching Pursuit (sparse approximation algorithm) for the Analog pre-coding, to cope with this complex challenge. For the reflecting element phase shift matrix the algorithm uses the arrival/departure angles of the LoS rays at the IRS elements. Basically, the joint problem of optimizing the analog and the digital pre-coder was transformed into a one-variable matrix reconstruction, i.e., sparsity-constrained signal-recovery optimization. The simulation outcome confirms that there is nearly 66.5% spectral enhancement if comparing with the classic network without IRS for a certain power scenario of the scheme.

References

NGMN Alliance, “NGMN 5G White Paper,” 2015.

Q. Wu, G. Y. Li, W. Chen, D. W. K. Ng, and R. Schober, “An Overview of Sustainable Green 5G Networks,” IEEE Wireless Communications, vol. 24, no. 4. 2017. doi: 10.1109/MWC.2017.1600343.

S. Buzzi, I. Chih-Lin, T. E. Klein, H. V. Poor, C. Yang, and A. Zappone, “A survey of energy-efficient techniques for 5G networks and challenges ahead,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 4, 2016, doi: 10.1109/JSAC.2016.2550338.

W. Xu, Y. Cui, H. Zhang, G. Y. Li, and X. You, “Robust Beam-forming with Partial Channel State Information for Energy Efficient Networks,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 12, 2015, doi: 10.1109/JSAC.2015.2478720.

G. C. Alexandropoulos, V. I. Barousis, and C. B. Papadias, “Pre-coding for multiuser MIMO systems with single-fed parasitic antenna arrays,” 2014. doi: 10.1109/GLOCOM.2014.7037416.

M. A. Sedaghat, R. R. Müller, and G. Fischer, “A novel single-RF transmitter for massive MIMO,” 2014.

S. V. Hum and J. Perruisseau-Carrier, “Reconfigurable reflect arrays and array lenses for dynamic antenna beam control: A review,” IEEE Transactions on Antennas and Propagation, vol. 62, no. 1. Institute of Electrical and Electronics Engineers Inc., pp. 183–198, 2014. doi: 10.1109/TAP.2013.2287296.

Al-Shaeli, I., Hburi, I. S., & Majeed, A. A. (2023). Reconfigurable intelligent surface passive beam-forming enhancement using unsupervised learning. International Journal of Electrical & Computer Engineering (2088-8708), 13(1).‏

El Ayach, O., Rajagopal, S., Abu-Surra, S., Pi, Z., & Heath, R. W. (2014). Spatially sparse precoding in millimeter wave MIMO systems. IEEE transactions on wireless communications, 13(3), 1499-1513.

C. Huang, G. C. Alexandropoulos, A. Zappone, M. Debbah, and C. Yuen, “Energy Efficient Multi-User MISO Communication Using Low Resolution Large Intelligent Surfaces,” Feb. 2019. doi: 10.1109/GLOCOMW.2018.8644519.

S. Hu, K. Chitti, F. Rusek, and O. Edfors, “User Assignment with Distributed Large Intelligent Surface (LIS) Systems,” in IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, 2018, vol. 2018-September. doi: 10.1109/PIMRC.2018.8580675.

C. Liaskos, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and I. Akyildiz, “Viewpoint: Using any surface to realize a new paradigm for wireless communications,” Communications of the ACM, vol. 61, no. 11. 2018. doi: 10.1145/3192336.

Y. Han, W. Tang, S. Jin, C. K. Wen, and X. Ma, “Large intelligent surface-Assisted wireless communication exploiting statistical CSI,” IEEE Transactions on Vehicular Technology, vol. 68, no. 8, 2019, doi: 10.1109/TVT.2019.2923997.

Q. Wu and R. Zhang, “Intelligent Reflecting Surface Enhanced Wireless Network: Joint Active and Passive Beam-forming Design,” Sep. 2018, [Online]. Available: http://arxiv.org/abs/1809.01423.

L. Zhang et al., “Space-time-coding digital meta-surfaces,” Nature Communications, vol. 9, no. 1, Dec. 2018, doi: 10.1038/s41467-018-06802-0.

C. Huang et al., “Holographic MIMO Surfaces for 6G Wireless Networks: Opportunities, Challenges, and Trends,” IEEE Wireless Communications, vol. 27, no. 5, 2020, doi: 10.1109/MWC.001.1900534.

M. Jung, W. Saad, M. Debbah, and C. S. Hong, “On the Optimality of Reconfigurable Intelligent Surfaces (RISs): Passive Beam-forming, Modulation, and Resource Allocation,” IEEE Transactions on Wireless Communications, vol. 20, no. 7, 2021, doi: 10.1109/TWC.2021.3058366.

C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen, “Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication,” Oct. 2018, [Online]. Available: http://arxiv.org/abs/1810.06934

H. Shen, W. Xu, S. Gong, Z. He, and C. Zhao, “Secrecy Rate Maximization for Intelligent Reflecting Surface Assisted Multi-Antenna Communications,” IEEE Communications Letters, vol. 23, no. 9, pp. 1488–1492, Sep. 2019, doi: 10.1109/LCOMM.2019.2924214.

Q. Wu and R. Zhang, “Beam-forming Optimization for Intelligent Reflecting Surface with Discrete Phase Shifts,” in ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2019, vol. 2019-May. doi: 10.1109/ICASSP.2019.8683145.

Q.-U.-A. Nadeem, A. Kammoun, A. Chaaban, M. Debbah, and M.-S. Alouini, “Large Intelligent Surface Assisted MIMO Communications,” IEEE Transactions on Wireless Communications, 2019.

M. Hua, Q. Wu, D. W. K. Ng, J. Zhao, and L. Yang, “Intelligent Reflecting Surface-Aided Joint Processing Coordinated Multipoint Transmission,” IEEE Transactions on Communications, vol. 69, no. 3, 2021, doi: 10.1109/TCOMM.2020.3042275.

Al-Shaeli, Intisar, and Ismail Hburi. "An Efficient Beam-forming Design for Reflective Intelligent Surface-Aided Communications System." 2022 International Conference on Computer Science and Software Engineering (CSASE). IEEE, 2022.‏

Q. Wu and R. Zhang, “Towards Smart and Reconfigurable Environment: Intelligent Reflecting Surface Aided Wireless Network,” IEEE Communications Magazine, vol. 58, no. 1, 2020, doi: 10.1109/MCOM.001.1900107.

I. , Hburi, H. F. , Khazaal, R. , Fahdel, and H. Raadi, “Sub-Array Hybrid Beam-forming for Sustainable Largescale mm-Wave-MIMO Communications,” in International Conference on Advanced Computer Applications, 2021, pp. 101–106.CAMSAP 2017, 2018, vol. 2017-December. doi: 10.1109/CAMSAP.2017.8313072.

M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, ver 2.1,” Available at http://cvxr.com/cvx/, 2017.

Downloads

Published

2024-08-01

Issue

Section

Electrical Engineering

How to Cite

Qasim, N., Hburi, I., & Al Ammar, H. S. (2024). Intelligent Reconfigurable surface technique for Multiple Antenna Communication System. Wasit Journal of Engineering Sciences, 12(3), 15-24. https://doi.org/10.31185/ejuow.Vol12.Iss3.507