Finite Element Analysis of Cogging Torque and Torque Ripple of Brushless DC Motor
DOI:
https://doi.org/10.31185/ejuow.Vol12.Iss3.417Keywords:
BLDC motor, cogging torque, torque ripple, magnet offset, magnet thickness, magnet embrace factor, initial rotor position, finite element analysis, Maxwell 2DAbstract
Brushless DC (BLDC) motors are used in various applications, including industrial, automotive, aerospace, and computers, due to their many benefits. Still, it has some drawbacks, like its cogging torque and torque ripple. A three-phase, 1500-watt, four-pole, inner rotor brushless DC motor was modeled and examined using finite element analysis (FEA) based on Maxwell-2D software to analyze cogging torque at no excitation state and torque ripple at full load condition. Design parameters, including magnet thickness, embrace factor, magnet offset, and initial rotor position, were employed to mitigate their effects on cogging torque and torque ripple. The detailed obtained results will guide BLDC motor designers to select proper values of magnet thickness, embrace factor, offset, and initial rotor position without needing to test many costly produced prototype motors.
References
D. M. Patel, U. L. Makwana, and L. D. College, “Finite Element Analysis of Permanent Magnet Brushless DC Motor,” Int. Res. J. Eng. Technol., vol. 4, no. 4, pp. 1835–1838, 2017, [Online]. Available: https://www.irjet.net/archives/V4/i4/IRJET-V4I4383.pdf.
T. Y. Lee, M. K. Seo, Y. J. Kim, and S. Y. Jung, “Motor Design and Characteristics Comparison of Outer-Rotor-Type BLDC Motor and BLAC Motor Based on Numerical Analysis,” IEEE Trans. Appl. Supercond., vol. 26, no. 4, 2016, doi: 10.1109/TASC.2016.2548079.
Y. B. A. Apatya, A. Subiantoro, and F. Yusivar, “Design and prototyping of 3-phase BLDC motor,” QR 2017 - 2017 15th Int. Conf. Qual. Res. Int. Symp. Electr. Comput. Eng., vol. 2017-Decem, pp. 209–214, 2017, DOI: 10.1109/QIR.2017.8168483.
A. Kumar, R. Gandhi, R. Wilson, and R. Roy, “Analysis of Permanent Magnet BLDC Motor Design with Different Slot Type,” 2020 IEEE Int. Conf. Power Electron. Smart Grid Renew. Energy, PESGRE 2020, pp. 1–6, 2020, doi: 10.1109/PESGRE45664.2020.9070532.
P. Kumar, D. V. Bhaskar, R. K. Behera, and U. R. Muduli, “A modified torque ripple minimization technique for BLDC motor drive using synthesized current phase compensation,” Proc. IEEE Int. Conf. Ind. Technol., vol. 2020-Febru, pp. 127–132, 2020, DOI: 10.1109/ICIT45562.2020.9067134.
C. Bianchini, F. Immovilli, E. Lorenzani, A. Bellini, and M. Davoli, “Review of design solutions for internal permanent-magnet machines cogging torque reduction,” IEEE Trans. Magn., vol. 48, no. 10, pp. 2685–2693, 2012, doi: 10.1109/TMAG.2012.2199509.
Z. Q. Zhu and D. Howe, “Influence of design parameters on cogging torque in permanent magnet machines,” IEEE Trans. Energy Convers., vol. 15, no. 4, pp. 407–412, 2000, DOI: 10.1109/60.900501.
M. Dai, A. Keyhani, and T. Sebastian, “Torque ripple analysis of a permanent magnet brushless DC motor using finite element method,” IEMDC 2001 - IEEE Int. Electr. Mach. Drives Conf., vol. 19, no. 1, pp. 241–245, 2001, DOI: 10.1109/IEMDC.2001.939306.
B. Boukais and H. Zeroug, “Magnet segmentation for commutation torque ripple reduction in a brushless DC motor drive,” IEEE Trans. Magn., vol. 46, no. 11, pp. 3909–3919, 2010.
R. Goutham, G. Raju, S. J. Powell, A. Sathishkumar, and P. Sivaprakasam, “Mitigation of Torque for Brushless DC Motor: Modeling and Control,” Int. J. Sci. Eng. Res., vol. 3, no. 5, 2012, [Online]. Available: http://www.ijser.org.
M. Pourjafari, E. F. Choolabi, and M. Jafarboland, “Optimum Design of Brush- Less DC Motor with Minimum Torque Pulsation Using FEM & PSO,” vol. 44, no. 2, pp. 59–70, 2012.
T. Srisiriwanna and M. Konghirun, “A study of cogging torque reduction methods in brushless DC motor,” 2012 9th Int. Conf. Electr. Eng. Comput. Telecommun. Inf. Technol. ECTI-CON 2012, pp. 0–3, 2012, DOI: 10.1109/ECTICon.2012.6254191.
A. N, V. N, and G. Kumar A, “Design and Analysis of Brushless D . C Motor for Reduce Cogging Torque Using,” vol. 1, no. 1, pp. 35–41, 2015.
A. J. Kanapara and K. P. Badgujar, “Performance improvement of permanent magnet brushless DC motor through cogging torque reduction techniques,” 2020 21st Natl. Power Syst. Conf. NPSC 2020, pp. 1–6, 2020, DOI: 10.1109/NPSC49263.2020.9331855.
K. Karthick, S. Ravivarman, R. Samikannu, K. Vinoth, and B. Sasikumar, “Analysis of the Impact of Magnetic Materials on Cogging Torque in Brushless DC Motor,” Adv. Mater. Sci. Eng., vol. 2021, 2021, DOI: 10.1155/2021/5954967.
A. J. Kazem and A. M. Ali, “Finite Element Analysis of Shaded Pole Motor Based on Maxwell2D,” J. Eng. Sustain. Dev., vol. 25, no. Special, pp. 1-115-1–220, 2021, doi: 10.31272/jeasd.conf.2.1.25.
C. L. Cham and Z. Bin Samad, “Brushless DC motor electromagnetic torque estimation with single-phase current sensing,” J. Electr. Eng. Technol., vol. 9, no. 3, pp. 866–872, 2014, DOI: 10.5370/JEET.2014.9.3.866.
C. He and T. Wu, “Design, analysis, and experiment of a permanent magnet brushless DC motor for electric impact wrench,” Proc. - 2016 22nd Int. Conf. Electr. Mach. ICEM 2016, pp. 1591–1597, 2016, doi: 10.1109/ICELMACH.2016.7732736.
Vipin Kumar Singh, Prof. Sanjay Marwaha, and Ashish Kumar Singh, “Design and Analysis of Permanent Magnet Brushless DC Motor for Solar Vehicle using Ansys Software,” Int. J. Eng. Res., vol. V6, no. 04, pp. 1215–1220, 2017, doi: 10.17577/ijertv6is040795.
P. Champa, P. Somsiri, P. Wipasuramonton, and P. Nakmahachalasint, “Initial rotor position estimation for sensorless brushless DC drives,” IEEE Trans. Ind. Appl., vol. 45, no. 4, pp. 1318–1324, 2009, DOI: 10.1109/TIA.2009.2023355.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Estabraq Abd-Al Kareem, Amer M.Ali
This work is licensed under a Creative Commons Attribution 4.0 International License.