Geoinformatics Engineering and GIS for Urban Growth Patterns Assessment

Mahmoud M. ALBATTAH

Abstract
Urbanization has profound effects on administrative boundaries, resulting in the expansion of urban areas, particularly at the periphery. This rapid growth leads to significant changes in landcover and land use, as agricultural and natural open areas are progressively transformed into densely populated urban landscapes characterized by housing, commercial infrastructure, and transportation systems.

The capital city of Jordan, Amman, faces exceptional urban growth, with its population surpassing 4.5 million people. This unprecedented expansion has given rise to extensive urban landscapes, presenting challenges for planners who lack a holistic understanding of the wide-ranging impacts.

To address these complexities and make well-informed decisions, planners urgently require comprehensive, up-to-date information on the causes, chronology, and consequences of urbanization. Integrating high-precision satellite imagery, geoinformatics data, and topographic insights offers a promising avenue to develop comprehensive inventories of urban change and growth. Such knowledge acts as a vital resource, enabling accurate assessments of expanding built-up areas and their associated implications.

The use of high geometric resolution satellite imagery and geoinformatics data combined with topographic information and GIS could provide effective information to develop urban change and growth inventory which could be explored towards producing a very important signature for the built-up area changes.

Keywords: Urban growth, aerial photographs, remote sensing, urban inventory, Amman
1. INTRODUCTION

The world has experienced a dramatic growth of its urban population for over the last 50 years. In addition, the rate of the urban population growth is more than that of the rural population [41]. Urban population is estimated at 7 billion in 2021 and is expected to rise to 10 billion by 2030” By then, almost two thirds of the world's population will be living in towns and cities. More importantly, the speed and scale of this growth have usually been concentrated in developing countries which are characterized by larger metropolitan areas and great number of mega cities.

Urban sprawl may also be defined as the scattering of new development on isolated tracts, separated from other areas by vacant land. It is also often described as leapfrog development as observed in all the major cities across the world. Urban sprawl has been criticized for inefficient use of land resources and energy and large-scale encroachment onto agricultural lands. There are many problems associated with fragmented conversion of agricultural land into urban use.

Cities are expanding in all directions resulting in large-scale.

urban sprawl and changes in urban land use. With the development and infrastructure initiatives mostly around the urban centers, the impacts of urbanization and sprawl would be on the environment and the natural resources. According to misuse of urban land along with urban sprawl improperly concentrating activities in one region and leaving much waste land, results in environment deterioration problem (e.g. increase of air and water pollution), traffic congestion, shortages in urban services and facilities, and major problems of urban poverty (e.g. lack of housing security, limited opportunity for education).

The spatial pattern of such changes is more clearly noticeable on the urban fringes or city peripheral rural areas, than in the city center. Inadvertently this results in an increase in the built-up area and associated changes in the spatial urban land use patterns.

This urban expansion causes loss of productive agricultural lands, other forms of greenery, loss in surface water bodies, reduction in ground water aquifers and increasing levels of air and water pollution. Further, it is widely agreed that fragmentation of land use is also harmful to biological conservation. There has been lot of debates on how to confine urban sprawl and conserve agricultural land resources. There is a demand to constantly monitor such urban changes and understand the processes for taking effective and corrective measures towards a planned and healthy development of urban areas.

More than 62% of the world population lives in urbanized areas. Recent developments of population growth, urban regional migration, and increasing ecological problems require advanced methods for city planners, economists, ecologists, and resource managers to support sustainable development of these fast-changing regions. To make intelligent decisions and take timely and effective action, planners need extensive, comprehensive knowledge about the causes, chronology, and effects of these processes.

In recent years, cities all over the world have experienced rapid growth because of the rapid increase in world population and the irreversible flow of people from rural to urban areas. Specifically, in the larger towns and cities of the developing world the rate of population increase has been constant and nowadays, many of them are facing unplanned and uncontrolled settlements at the densely populated sites or fringes. To prevent from such occasions urban planners, need detailed updated data for thorough planning and management. However, most city planners have a lack of such data and often they possess old data which is not relevant for current decision making. Even if they do not hold a detailed updated data of the city area a regularly updated data with an acceptable accuracy can at least give them an impression about the changes in the city area [23]

While the global population has grown dramatically during the last century, we also have witnessed a ‘population implosion’: the unprecedented concentration of humans into urban areas around the globe. Since 1800 the number of urban dwellers has jumped by a factor of 100 to 2.5 billion individuals, or nearly one-half of the world’s population (Figure 1). Once confined to the industrialized regions of Europe and North America, the trend is now global, with cities in developing nations growing by up to 7% per year. For this reason the global change that most of Earth’s inhabitants will experience during the next decades may well be dominated by the changing demographic, economic, and environmental conditions of the world’s cities, rather than by comparatively subtle shifts in climate.
Urbanization is just one of many ways in which humans are altering the landcover of the globe. Most of these landscape transformations occur within a regional context, but the specific, year-to-year changes occur at local scales, often distributed in a seemingly random pattern. Although these human-induced land transformations may seem of relatively minor impact considered against the vast reaches of the planet, these changes are estimated to have significantly altered more than 80% of the Earth’s land area over the last several centuries.

Of critical importance is linking these observed changes in landcover to the driving socio-economic or environmental origins. In particular, the geography of urban growth offers a graphic depiction of the interplay between economics, political systems, and the environment. While the growth of cities may appear inexorable and monolithic, it reflects a multitude of conscious choices made by individuals and institutions reconciling these competing factors for their own ‘best interests’. The sum of these choices appears as the suburbs, shopping complexes, and industrial centers that now populate the globe. It is also true that urban development usually does not follow any simple plan. Early urban growth models based on the steady outward expansion from an intact urban core have yielded to a reality that is far more varied and complex. The spatial organization of cities varies widely, and in part reflects the culture and economic standing of the host region. Viewed through time, urban areas rarely remain static and changes in urban infrastructure, the reallocation of capital, and land conversion can all alter the fabric of the urban plan.

Assessment and monitoring of urbanization and other localized land transformations is exceptionally difficult at regional and global scales. For some regions of the world, where sophisticated government agencies maintain accurate records for taxation and development purposes, it is often possible to extract at least regional-level statistics. However, even in these cases there is rarely specific geographical information to support such figures. In many regions of the world there are no regionally accurate figures on land transformations. This information simply is not gathered, or even when gathered, made publicly available.

One technology which offers considerable promise for monitoring landcover change is satellite remote sensing and aerial photographs. This observation technology provides globally consistent, repetitive measurements of earth surface conditions relevant to climatology, hydrology, oceanography and land cover monitoring. One mission in particular, the Landsat series begun in 1972, was designed and continues to operate with the objective of tracking changes in landcover conditions. The high spatial resolution and regular revisit times of the Landsat mission are well suited to studies of regional, national, and global urbanization. While census data provide a statistical view of demographics and economics, the actual spatial patterns of urban infrastructure only emerge from remotely sensed imagery. Furthermore, the frequent revisit times of satellite sensors constantly update our view of the urban landscape, creating a detailed time-series of urban growth. Rather than simply showing the
gross change over a long period, these satellite time-series can record the variability of urban development in space and time, thus permitting a rigorous comparison with economic and demographic data. Jordan, as many of the developing countries has a problem with the urban expansion and the growth of population in the main cities especially in the capital Amman. For example, over the last decades Amman, the capital city of Jordan has significantly expanded due to different development activities and migration of people after the Gulf wars in 1990 and in 2004. Various changes have been and are being occurred in the city but there are no regularly updated urban data to indicate those changes.

2. STUDY AREA AND POPULATION OF AMMAN

2.1. Population of Amman

Amman has growth rapidly through a combination of natural population increase, rural-urban migration, influx of migrant labors and Palestinian settlement. Following Israeli occupation of the West Bank of Jordan, many Palestinians settled east the river of Jordan and were further bolstered by 300000 leaving Kuwait after the Gulf War. Combining with very high rates of natural population with in-migration the population of Jordan has risen dramatically between 1954 and 1994. About half of the population live within the urban area of Amman and its satellites towns Zarqa and Suwaileh. The rapid growth of a low-density city has not only changed the balance of urban-rural population but has consumed land which is capable of sustaining rain-fed agriculture which is a rare commodity in Jordan.

Water demand has increased with population and has required ground water to be exploited and pumped to Amman.

In general, it should be interesting to study the urban growth in the capital city comparing the growths occurred before 1990 with the changes occurred after this date.

2.2. Study Area

Amman is located on the undulating plateau that makes up the north-west of Jordan (see Fig. 2 and Fig. 3 for a general location map). The original site of the city occupied seven hills or ‘jabals’ around the Wadi ‘Ras el Ain which flows north-east from the plateau toward the river Zarqa basin (see photograph Fig. 3). The original central part of the city was at an altitude of between 725 and 800 m. Expansion of the city in the past 30 years has resulted in the occupation of some 21 hills in total with an altitudinal extension to 900 m and above. The topography of the city consists of a series of steep hills and deep and sometimes narrow valleys. Most of the districts of Amman take their names from the jabals (mountain) on which they are situated. While initially development was principally on the upper slopes and crests and the lower slopes of this hill–valley system, the upsurge in urban development over the last 60 years has seen extensive development on the frequently steeper mid-slope locations (see Photograph 1). Fig. 4
Figure 2 Map of Jordan from Google.

Figure 3 Amman urban expansion with time: general location map from Municipality of Greater Amman (2010).
3. Urban Growth Systems

Urban development is one kind of emergent phenomenon of urban system, which is very complex and hard to measure.

3.1. Urban growth

Urban growth indicates a transformation of the vacant land or natural environment to construction of urban fabrics including residential, industrial and infrastructure development. It mostly happens in the fringe urban areas. This process can be regarded as the spatial representation of the economic structural shift of labor away from agricultural to industrial-based activities. Crucial to this shift are the output gains associated with resource transfers from the low-productivity agricultural sector to the high productivity industrial sector (Kam.Wing.Chan 1994).

From systematic view, we can divide urban growth into spontaneous and self-organization process. Spontaneous growth results in a homogeneous and sparse spatial pattern, which contains more random components, whereas self-organizational growth result in spatial agglomeration pattern, which is combined with more socio-economic activities. Clearly, urban growth is one complex spatial changing phenomenon in urban system.

3.2. Urban growth

Modeling urban growth aims to support urban development planning and sustainable growth management. Scientific planning and management must be based on the proper understanding of the dynamic process of urban growth, i.e. from past to present to future. Such understanding enables planners to experimentally simulate "what-if" decision making.

Cities can be understood as complex systems considering their intrinsic characteristics of emergence, self-organizing, self- similarity, and non-linear behavior of land use dynamics. As a result of the operation of complex urban system, there exist some spatial processes, like urban expansion, urban pattern change, land use conversion, urban population growth, social development, economic development, etc [1]-[3].

Among all these items, some are presented as spatial and temporal changes.

3.3. Projection of Complexity in Urban Growth

Urban growth consists of the various scales of new projects. Large-scale projects are characterized by heavy investment, long-term construction and the number of actors involved; examples include airports, industrial parks, and universities. By contrast, small scale projects are characterized by rapid construction, light investment, and few actors; examples can be a private house and a small shop. Urban growth results in various land uses with different levels of social, economic, and environmental values. This is a higher dimension of heterogeneity.
indicated in the attributes of spatial objects. New development units are the spatial entities carrying heterogeneous social, economic, and environmental activities [13]-[17]-[21].

3.4. Spatial Complexity

A frequently cited shortcoming of GIS and most spatial analysis tools is their difficulty in dealing with dynamic processes over landscapes. This is not because of a lack of people thinking about dynamic processes in space, nor is it from a lack of talent or technology. It has more to do with the fact that space is inherently complex, and dynamic processes often become complex when they are regarded in a spatial context. As a result, the first step to spatial modeling is to recognize the spatial complexity in the study. Spatial complexity may include spatial interdependence, multi-scale issues and structural or functional complexity [4]-[2]-[11].

Spatial dependence is defined as a functional relationship between what happens at one point in space and what happens at a neighboring point. In urban growth, spatial dependence is indicated by the impacts of neighboring sites on land conversion of any site which is the result of a causal relationship among neighboring entities, e.g. interaction. The impacts can be twofold: positive (stimulation) or negative (constraint) from three systems. Examples of positive impacts may include transport infrastructure or developed urban area; in particular fringe growth is highly dependent on transport infrastructure. Examples of negative impacts may be steep terrain (slope) and non-developable land such as deep lakes. The complexity lies in the following facts:

- The impacts are determined by an unknown number of factors and their spatial relationships are non-linear.
- The intensity of spatial dependence or neighborhood size is spatially and locally variable.
- Land conversion includes probability (occurred or not), density (scale), intensity (floor number), function (land use) and structure (shape or morphology); each may have distinguished spatial dependence [37]-[10]-[16]-[15].

Urban growth involves several hierarchical structures. In the spatial dimension, U includes different levels of shopping centers and road networks; system N includes different levels of ecological units; system P contains different levels of urban planning (general plan, district plan and zoning plan). As a result, urban growth G may be related to more complex spatial hierarchies as interacting with three systems. Urban growth involves both; structure is more linked with pattern and function rather than with process.

The representation or semantics understanding of a spatial system is diverse. The spatial representation of structure and function may influence the spatial understanding of urban growth pattern and process. Its complexity lies in the following:

- The self-organized process of urban growth has complex spatial representation and understanding.
- The interaction between pattern and process is dynamic and non-linear.

3.5. Temporal Complexity

Urban growth means only increasing the number of new units transformed from nonurban resources. Urban growth is largely controlled or impacted by its economic development scale and environmental protection strategy. Or rather it is controlled by the systematic coordination between the three systems. For example, when system N is not influential and strong, more agricultural land might be lost. Economic development is not predictive, in the long term, due to numerous uncertain factors. The nonlinear interactions between the three systems lead to a non-linear curve of urban growth [22]-[25].

3.6. Decision-Making Complexity

Decision-making complexity is indicated in the unit and process of decision-making, and actors or decision-makers. The decision-making unit and process of large-scale projects are relatively more complicated than those of small-scale ones. They involve more actors or decision-makers. However, a small building only needs the decision-making of one private developer. Large-scale projects are limited in quantity and their decision-making is more certain and well planned if compared with others. The latter are large in quantity and their decision-making is more uncertain, dynamic and less organized. However, the collective behaviors of small-scale projects can be emergent, which are controlled or guided by various management and urban development policies. From the perspective of self-organizing theory, all of these small-scale and large-scale projects are spatially and temporally self-organized into an ordering system. The decision-making behaviors of different functions of projects are also disparate, e.g. commercial and residential.

4. Methodology

In this study we will present and apply a methodology for the use of the latest computing and information technology trends (Geographic Information Systems (GIS), combined with High Geometric Resolution Remote
Sensing (RS) Satellite imagery, photogrammetric techniques in urban planning, in order to be able to accurately simulate and model the urban sprawl phenomena in developing countries in general and more precisely in the Jordanian context and thus assess the effect of such urban expansion [26]-[28]-[34]-[9].

Land use/cover patterns for 2010, 2015 and 2020 were mapped by the use of Multi-date Landsat Thematic Mapper (TM) data, SPOT XS and panchromatic images, aerial photographs, Topographic maps scaled 1:50000, Geologic maps scaled 1:100000, Soil maps scaled 1:50000 and field information about the study area have been collected from several resources such as Royal Jordanian Geographic Center (RJGC), Ministry of public works, Natural resource authority [27]-[39].

Landsat thematic mapper and SPOT XS images have been corrected (Image to Map), as follows:
- Four sheets of topographic maps scaled to 1:50000 are used to cover the entire study area, these sheets are called Amman, Sahab, Swaileh, Al-zarqa and they are used as a reference for the image correction.
- Polynomial interpolation using 42 ground control points to get the relationship image-map
- Corrected image is then derived by a resampling process

Features have been enhanced by radiometric correction of Spot XS and Landsat images SPOT XS and panchromatic images are combined by geometric correction and resampled to derive 5-m resolution SPOT XS images [34]-[32]-[30].

The geometric center of Greater Amman is defined as the intersection point between Princess Basma Street and Wadi Abdoon Street (35°54’ E and 31°56N)

![Image](image.png)

Figure 5 Amman: Geometric center of Greater Amman location map from RJGC (2007)

Nine land use and land cover types are identified and used in this study, including:[19]-[28]-[19][20].
- (1) Water area,
- (2) Built-up area,
- (3) Cultivated areas,
- (4) Woods, brushwood, scrub areas,
- (5) Distorted surface,
- (6) Quarry or mines,
- (7) Grassy areas,
- (8) plowed areas,
- and, (9) Cemeteries.

With the aid of Erdas Imagine computer software, each image was enhanced using histogram equalization (in order to gain a higher contrast in the ‘peaks’ of the original histogram) to increase the volume of visible information. This procedure is important for helping identify ground control points in rectification [38]-[40].

As previously stated, all images are rectified to a common UTM (Universal Transverse Mercator) coordinate system based on the 50 000 topographic maps of Greater Amman. Each image was then radiometrically corrected
using relative radiometric correction method (Jensen 1996). A supervised classification with the maximum
likelihood algorithm was conducted to classify the Landsat images using bands 2 (green), 3 (red) and 4 (near-infrared). The accuracy of the classification was verified by field checking or comparing with existing land uses and cover maps that have been field-checked. In performing land use/cover change detection, a cross-tabulation detection method was employed. A change matrix was produced with the help of Erdas Imagine software. Quantitative areal data of the overall land use/cover changes as well as gains and losses in each category between 2010 and 2015 were then compiled [34]-[14]-[12].

To analyze the nature, rate, and location of urban land change, an image of urban and built-up land was extracted from each original land cover image. Extracted images were then overlaid and recoded to obtain an urban land change (expansion) image. The urban expansion image was further overlaid with several geographic reference images to help analyze the patterns of urban expansion, including an image of the city boundary, major roads, and major urban centers. These layers were constructed in a vector GIS environment and converted into a raster format (grid size=30 m) [5]-[6]-[7].

The city boundary image can be utilized to find urban land change information within the city. Because proximity to a certain object, such as major roads, has an important implication in urban land development, urban expansion processes often show an intimate relationship with distance from these geographic objects. Using the buffer function in GIS, a buffer image was generated, showing the proximity to the major roads of the study area. Local conditions have been considered in selecting the buffer widths. The buffer image was overlaid with the urban expansion image to calculate the amount of urban expansion in each zone. The density of urban expansion was then calculated by dividing the amount of urban expansion by the total amount of land in each buffer zone. These values of density can be used to construct a distance decay function of urban expansion [28]-[8]-[18].

5. Results and Discussion

The magnitude of the urban sprawl depicts the state of land use and urbanization process at a particular point of
time.

Using a combination of different data types and formats in monitoring urban development makes the study
difficult. The main problem encountered during the study is using the data in different coordinate systems (scale, screwing, etc.) and structure (raster, vector). The changes on residential areas obtained via aerial photographs, satellite images, and field data between 2010 – 2015 and 2015-2020 as periods, using effective techniques of Remote Sensing and GIS.

TABLE 1 PER CENT PROPORTION OF LAND USE TO TOTAL LAND, YEAR 2010

<table>
<thead>
<tr>
<th>No of Land Use Categories</th>
<th>Land Use Categories</th>
<th>Per cent Proportion of Land Use to Total Land</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wood , Scrub</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Distorted area</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Quarry or Mine</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>Plowed areas</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>Grassy areas</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>Cultivated areas</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>Built-up areas</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>Water Surfaces</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Unclassified</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Table 1 depicts that the year 2010 has 12 per cent of built-up areas, 10 per cent of cultivated areas, 11 per cent of plowed areas and 40 per cent of grassy areas

TABLE 2 PER CENT PROPORTION OF LAND USE TO TOTAL LAND, YEAR 2015

<table>
<thead>
<tr>
<th>No of Land Use Categories</th>
<th>Land Use Categories</th>
<th>Per cent Proportion of Land Use to Total Land</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wood , Scrub</td>
<td>6</td>
</tr>
</tbody>
</table>
Table 2 depicts that the year 2015 has 18 per cent of built-up areas, 9 per cent of cultivated areas, 11 per cent of plowed areas and 36 per cent of grassy areas. This depicts how the process of land acquisition has taken place by engulfing these areas under the built-up.

TABLE 3 Per Cent Proportion Of Land Use To Total Land, Year 2020

<table>
<thead>
<tr>
<th>No of Land Use Categories</th>
<th>Land Use Categories</th>
<th>Per cent Proportion of Land Use to Total Land</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Wood, Scrub</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Distorted area</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Quarry or Mine</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>Plowed areas</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>Grassy areas</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>Cultivated areas</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>Built-up areas</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>Water Surfaces</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Unclassified</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Table 3 shows that the year 2020 has 16 per cent of built-up areas, 8 per cent of cultivated areas, 13 per cent of plowed areas and 37 per cent of grassy areas. This depicts how the process of land acquisition continues to engulf mainly the cultivated and plowed areas under the barren domain and built-up areas. During this period the built-up area extended along the main highways connecting the capital the major cities of the Kingdom.

The growth and trend of urban sprawl can be analyzed by the determination of the change in the per cent of various land use categories during the periods 2010-2015 and 2015-2020. We can notice an increase of 8 per cent (from the total area) in the built-up land and to compensate a strong decline in the cultivated and plowed areas [31]-[33]-[22].

6. CONCLUSION

Jordan, as many of the developing countries has a problem with the urban expansion and the growth of population in the main cities especially in the capital Amman. For example, over the last decades Amman, the capital city of Jordan has significantly expanded due to different development activities and migration of people after the Gulf wars and the Syrian civil war which generated multiple waves of immigration. Various changes have been and are being occurred in the city but there are no regularly updated urban data to indicate those changes.

In this study we presented and applied a methodology for the use of the latest computing and information technology trends: Geographic Information Systems (GIS), combined with High Geometric Resolution Remote sensing (RS) Satellite Imagery, Photogrammetric Techniques in urban planning, in order to be able to accurately simulate and model the urban sprawl phenomena in the Jordanian context and thus assess the effect of such urban expansion.

The urban expansion in Amman (the study region) is governed by the transport network. The main arteries along which the sprawl is taking place include, the downtown, Swaileh, Naour, and along the national highways connecting the major cities of the Kingdom.

Results and analysis depict how the process of land acquisition has taken place by engulfing the cultivated and the plowed areas under the built-up and barren domain.
REFERENCES

[28] Mahmoud M. ALBATTAH, and H. Kharabsheh, 2000, “ Topographic and Satellite Information for Preliminary Route Location “, Photogrammetric Record : 16 (96) pp 987-996,
[34] Mahmoud M. ALBATTAH, 1988, “SPOT imagery and some problems in analytical photogrammetry” a technical report (pp. 150), IGN-France (2, Ave.Pasteur, 94160 St. Mandé, Paris).

Wasit Journal of Engineering Sciences,2023, Special Issue