Experimental and Numerical Simulation of Thermal Storage Capsule in AC Duct System
N/A
DOI:
https://doi.org/10.31185/ejuow.Vol11.Iss3.485Keywords:
Keywords: thermal storage, phase change material, porous media, Nusselt number, contour analysis.Abstract
This experimental and numerical study investigates the effect of porous media on the thermal storage behaviour of a refrigeration duct system. The study presents the transient behaviour of heat absorption and Nusselt number for different velocities and porous media presence/absence cases. Results show that the heat transfer rate decreases over time, with the presence of porous media, providing resistance to heat absorption, particularly at relatively low velocities. The Nusselt number decreases slightly over time, but it increases as the velocity increases in all cases, with the maximum value observed at a velocity of 3 m/s. The presence of porous media significantly enhances heat transfer, with an improvement of up to 150% at a lower velocity of 1.5 m/s and 110% at an inlet velocity of 2.25 m/s. The study provides a comprehensive visualisation of the heat transfer process through contour analysis of temperature distribution, allowing better understanding of the thermal storage system’s design and performance. The findings have implications for the optimisation of thermal storage systems in various applications, including energy-efficient buildings and renewable energy systems.
References
References
Wen, R., Zhang, W., Lv, Z., Huang, Z., Gao, W. (2018). A novel composite Phase change material of Stearic Acid/Carbonized sunflower straw for thermal energy storage. Materials Letters, 215: 42-45. https://doi.org/10.1016/j.matlet.2017.12.008
Papadimitratos, A., Sobhansarbandi, S., Pozdin, V., Zakhidov, A., Hassanipour, F. (2016). Evacuated tube solar collectors integrated with phase change materials. Solar Energy, 129: 10-19. https://doi.org/10.1016/j.solener.2015.12.040
Muratore, C., Aouadi, S.M., Voevodin, A.A. (2012). Embedded phase change material microinclusions for thermal control of surfaces. Surface and Coatings Technology, 206(23): 4828-4832. https://doi.org/10.1016/j.surfcoat.2012.05.030
Du, K., Calautit, J., Wang, Z., Wu, Y., Liu, H. (2018). A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges. Applied energy, 220: 242-273. https://doi.org/10.1016/j.apenergy.2018.03.005
Liu, C., Groulx, D. (2014). Experimental study of the phase change heat transfer inside a horizontal cylindrical latent heat energy storage system. International Journal of Thermal Sciences, 82: 100-110. https://doi.org/10.1016/j.ijthermalsci.2014.03.014
Zhang, N., Yuan, Y., Cao, X., Du, Y., Zhang, Z., Gui, Y. (2018). Latent heat thermal energy storage systems with solid–liquid phase change materials: a review. Advanced Engineering Materials, 20(6): 1700753. https://doi.org/10.1002/a-dem.201700753
Liu, C., Yuan, Y., Zhang, N., Cao, X., & Yang, X. (2014). A novel PCM of lauric–myristic–stearic acid/expanded graphite composite for thermal energy storage. Materials Letters, 120: 43-46. https://doi.org/10.1016/j.matlet.2014.01.051
Cabeza, L.F., Castell, A., Barreneche, C.D., De Gracia, A., Fernández, A.I. (2011). Materials used as PCM in thermal energy storage in buildings: A review. Renewable and Sustainable Energy Reviews, 15(3), 1675-1695. https://doi.org/10.1016/j.rser.2010.11.018
Regin, A.F., Solanki, S.C., Saini, J.S. (2008). Heat transfer characteristics of thermal energy storage system using PCM capsules: a review. Renewable and Sustainable Energy Reviews, 12(9): 2438-2458. https://doi.org/10.1016/j.rser.2007.06.009
Sarı, A., Karaipekli, A. (2007). Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Applied thermal engineering, 27(8-9): 1271-1277. https://doi.org/10.1016/j.applthermaleng.2006.11.004
Akgün, M., Aydın, O., Kaygusuz, K. (2008). Thermal energy storage performance of paraffin in a novel tube-in-shell system. Applied thermal engineering, 28(5-6): 405-413. https://doi.org/10.1016/j.applthermaleng. 2007.05.013
Yuan, Y., Zhang, N., Tao, W., Cao, X., He, Y. (2014). Fatty acids as phase change materials: A review. Renewable and Sustainable Energy Reviews, 29: 482-498. https://doi.org/10.1016/j. rser.2013.08.107
Agyenim, F., Eames, P., Smyth, M. (2010). Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array. Renewable energy, 35(1): 198-207. https://doi.org/10.1016/j.renene.2009.03.0 10
Esapour, M., Hosseini, M.J., Ranjbar, A.A., Pahamli, Y., Bahrampoury, R. (2016). Phase change in multi-tube heat exchangers. Renewable Energy, 85: 1017-1025. https://doi.org/10.1016/j.renene.2015.07.063
Liu, H., Li, S., Chen, Y., Sun, Z. (2014). The melting of phase change material in a cylinder shell with hierarchical heat sink array. Applied thermal engineering, 73(1): 975-983. https://doi.org/10.1016/j.applthermaleng.2014.08.062
Liu, J., Xu, C., Ju, X., Yang, B., Ren, Y., Du, X. (2017). Numerical investigation on the heat transfer enhancement of a latent heat thermal energy storage system with bundled tube structures. Applied Thermal Engineering, 112: 820-831. https://doi.org/10.1016/j.applthermaleng.2016.10.144
Jesumathy, S.P., Udayakumar, M., Suresh, S., Jegadheeswaran, S. (2014). An experimental study on heat transfer characteristics of paraffin wax in horizontal double pipe heat latent heat storage unit. Journal of the Taiwan Institute of Chemical Engineers, 45(4): 1298-1306. https://doi.org/10.1016/j.jtice.2014.03.007
Kousha, N., Rahimi, M., Pakrouh, R., Bahrampoury, R. (2019). Experimental investigation of phase change in a multitube heat exchanger. Journal of Energy Storage, 23: 292-304. https://doi.org/10.1016/j.est.2019.03.024
Joybari, M.M., Seddegh, S., Wang, X., Haghighat, F. (2019). Experimental investigation of multiple tube heat transfer enhancement in a vertical cylindrical latent heat thermal energy storage system. Renewable Energy, 140: 234-244. https://doi.org/10.1016/j.renene.2019.03.037
Alizadeh, M., Pahlavanian, M.H., Tohidi, M., Ganji, D. D. (2020). Solidification expedition of Phase Change Material in a triplex-tube storage unit via novel fins and SWCNT nanoparticles. Journal of Energy Storage, 28: 101188. https://doi.org/10.1016/j.est.2019.101188
Yuan, Y., Cao, X., Xiang, B., Du, Y. (2016). Effect of installation angle of fins on melting characteristics of annular unit for latent heat thermal energy storage. Solar energy, 136: 365-378. https://doi.org/10.1016/j.solener.2016.07.014
Mosaffa, A.H., Talati, F., Tabrizi, H.B., Rosen, M.A. (2012). Analytical modeling of PCM solidification in a shell and tube finned thermal storage for air conditioning systems. Energy and buildings, 49: 356-361. https://doi.org/10.1016/j.enbuild.2012.02.053
Baby, R., Balaji, C. (2013). Thermal optimization of PCM based pin fin heat sinks: an experimental study. Applied Thermal Engineering, 54(1): 65-77. https://doi.org/10.1016/j.applthermaleng.2012.10.056
Yousef, M.S., Hassan, H., Kodama, S., Sekiguchi, H. (2019). An experimental study on the performance of single slope solar still integrated with a PCM-based pin-finned heat sink. Energy Procedia, 156: 100-104. https://doi.org/10.1016/j.egypro.2018.11.102
Sun, Z., Fan, R., Yan, F., Zhou, T., Zheng, N. (2019). Thermal management of the lithium-ion battery by the composite PCM-Fin structures. International Journal of Heat and Mass Transfer, 145: 118739. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118739
Acır, A., Canlı, M.E. (2018). Investigation of fin application effects on melting time in a latent thermal energy storage system with phase change material (PCM). Applied Thermal Engineering, 144: 1071-1080. https://doi.org/10.1016/j.applth ermaleng.2018.09.013
Sciacovelli, A., Gagliardi, F., Verda, V. (2015). Maximization of performance of a PCM latent heat storage system with innovative fins. Applied Energy, 137: 707-715. https://doi.org/10.1016/j.apenergy.2014.07.015
Mat, S., Al-Abidi, A.A., Sopian, K., Sulaiman, M.Y., Mohammad, A.T. (2013). Enhance heat transfer for PCM melting in triplex tube with internal-external fins. Energy conversion and management, 74: 223-236. https://doi.org/10.1016/j.enconm an.2013.05.003
Khan, Z., Khan, Z., Tabeshf, K. (2016). Parametric investigations to enhance thermal performance of paraffin through a novel geometrical configuration of shell and tube latent thermal storage system. Energy Conversion and Management, 127: 355-365. https://doi.org/10.1016/j.enconman.2016.09.030
Yang, X., Lu, Z., Bai, Q., Zhang, Q., Jin, L., Yan, J. (2017). Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins. Applied energy, 202: 558-570. https://doi.org/10.1016/j.apenergy.2017.05.007
Wang, P., Yao, H., Lan, Z., Peng, Z., Huang, Y., Ding, Y. (2016). Numerical investigation of PCM melting process in sleeve tube with internal fins. Energy Conversion and Management, 110: 428-435. https://doi.org/10.1016/j.enconman.2015.12.042.
Khodabandeh, E., Dastjerdi, M. S., Shokri, M., & Akhavan-Behabadi, M. A. (2020). Experimental investigation of paraffin wax as a phase change material in a domestic refrigerator. Applied Thermal Engineering, 173, 115214.
Wang, F., Zheng, X., Wu, J., & Zhou, D. (2020). Experimental investigation of a refrigeration system with capric-lauric acid eutectic mixture as a phase change material. Applied Thermal Engineering, 177, 115350.
Zhang, Y., Zhang, B., & Wu, J. (2019). A novel refrigeration system with phase change materials based thermal storage unit. Energy Conversion and Management, 180, 72-82.
Zhu, X., Liu, W., Liu, G., Zhang, Y., & Wang, R. (2019). A novel hybrid refrigeration system using phase change materials as thermal storage. Applied Energy, 241, 257-270.
Zhang, Y., Li, Y., & Wu, J. (2018). Application of phase change material-based thermal storage unit in supermarket refrigeration systems. Applied Energy, 210, 644-655.

Downloads
Published
Issue
Section
License
Copyright (c) 2023 Wasit Journal of Engineering Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.