Using Cementitious Materials to Enhance Concrete Properties and Improve the Environment: A Review

Authors

  • Adil M. Jabbar Wasit University, College of Engineering

DOI:

https://doi.org/10.31185/ejuow.Vol11.Iss3.482

Keywords:

Supplementary cementitious materials, cement, Silica fume, fly ash, metakaolin, blast furnace slag

Abstract

Cement production significantly contributes to carbon dioxide emissions, which increase global warming. Therefore, reducing cement consumption can support efforts to reduce that risk. On the other hand, the consumption of industrial wastes in concrete production contributes to improving the environment. Industrial waste can be used as supplementary cementitious materials (SCMs) to enhance concrete properties. This paper reviews the effects of SCMs, such as silica fume, fly ash, metakaolin, and ground granulated blast furnace slag (GGBFS), on the properties of fresh and hardened concrete. The findings show that SCMs enhance packing density and reduce permeability. The impact of SCMs on concrete properties appears after a period of curing depending on the availability of calcium hydroxide and activity index. Calcium hydroxide produced from cement hydration reacts with silicates of SCMs to produce additional calcium-silicate hydrates that enhance concrete strength and minimize the relatively large size of calcium hydroxide, which lowers porosity. Silica fume and metakaolin raise water demands and reduce workability, while GGBFS and fly ash improve workability. Silica fume, metakaolin, and (10) μm particle size of GGBFS increase early-age strength, (10-45) μm particle size of GGBFS enhances strength after 28 days, while fly ash raises the strength after 90 days. For low cement content, 10 % or less silica fume, (10-30) % fly ash, (10-20) % GGBFS or metakaolin are considered the perfect percentage to arrive at best strength. For high cement content, (25-30) % silica fume or 40 % fly ash is considered the optimum ratio to reach the highest strength.

References

P. Kumar Mehta and Paulo J. M. Monteiro, Concrete Microstructure, Properties, and Materials, 3rd edition. New York Lisbon Madrid Mexico City Milan London: McGraw-Hill, 2006.

ACI Committee 211, “Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete,” 2002. [Online]. Available: https://pdfs.semanticscholar.org/ad80/1b522c5e725056a5a90d7d00bfa20356384a.pdf.

ACI Committee 363, “ACI 363.2R-11: Guide to Quality Control and Assurance of High-Strength Concrete,” American Concrete Institute. p. 23, 2011.

F. De Larrard and T. Sedran, “Mixture-proportioning of high-performance concrete,” Cem. Concr. Res., vol. 32, no. 11, pp. 1699–1704, 2002, doi: 10.1016/S0008-8846(02)00861-X.

ACI Committee 211, “ACI 211.4R-08: Guide for Selecting Proportions for High-strength Concrete Using Portland Cement and Other Cementitious Materials,” 2008.

P. Richard and M. Cheyrezy, “Composition of reactive powder concretes,” Cem. Concr. Res., vol. 25, no. 7, pp. 1501–1511, 1995, doi: 10.1016/0008-8846(95)00144-2.

A. A. Jhatial, I. Nováková, and E. Gjerløw, “A Review on Emerging Cementitious Materials, Reactivity Evaluation and Treatment Methods,” Buildings, vol. 13, no. 2, 2023, doi: 10.3390/buildings13020526.

M. Jalalinejad, A. Hemmati, and A. Mortezaei, “Mechanical and Durability Properties of Sustainable Self-compacting Concrete with Waste Glass Powder and Silica Fume,” Period. Polytech. Civ. Eng., vol. 67, no. 3, pp. 785–794, 2023, doi: 10.3311/PPci.21537.

V. B. Thapa and D. Waldmann, “A short review on alkali-activated binders and geopolymer binders,” Vielfalt im Massivbau - Festschrift zum 65. Geburtstag von Prof. Dr. Ing. Jürgen Schnell Author, co-author Pahn, Matthias Thiele, Catherina, pp. 576–591, [Online]. Available: http://hdl.handle.net/10993/35284.

M. Panjehpour, A. Abdullah, A. Ali, and R. Demirboga, “a Review for Characterization of Silica Fume and its Effect on Concrete Properties,” Int. J. Sustain. Constr. Eng. Technol., vol. 2, no. 2, pp. 1–7, 2011.

G. Asadollahfardi, B. Yahyaei, A. M. Salehi, and A. Ovesi, “Effect of admixtures and supplementary cementitious material on mechanical properties and durability of concrete,” Civ. Eng. Des., vol. 2, no. 1–2, pp. 3–11, 2020, doi: 10.1002/cend.201900016.

M. F. Ghazy, M. A. Abd Elaty, and N. M. Zalhaf, “Mechanical Properties of HPC Incorporating Fly Ash and Ground Granulated Blast Furnace Slag After Exposure to High Temperatures,” Period. Polytech. Civ. Eng., vol. 66, no. 3, pp. 761–774, 2022, doi: 10.3311/PPci.19751.

A. M. Jabbar, M. J. Hamood, and D. H. Mohammed, “Ultra High Performance Concrete Preparation Technologies and Factors Affecting the Mechanical Properties: A Review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1058, no. 1, p. 012029, 2021, doi: 10.1088/1757-899x/1058/1/012029.

A. Arora et al., “Microstructural packing- and rheology-based binder selection and characterization for Ultra-high Performance Concrete (UHPC),” Cem. Concr. Res., vol. 103, no. October, pp. 179–190, 2018, doi: 10.1016/j.cemconres.2017.10.013.

ACI 239R, “Ultra-high-performance concrete: An emerging technology report,” Am. Concr. Inst. ACI 239, 2018.

Federal Highway Administration, “Structural Behavior of Ultra-High Performance Concrete Prestressed I-Girders,” no. August, p. 106, 2006, [Online]. Available: http://www.tfhrc.gov/structur/pubs/06115/index.htm.

G. Benjamin A., “Material Property Characterization of Ultra-High Performance Concrete,” Fhwa, no. FHWA-HRT-06-103, p. 186, 2006.

K. Ragalwar, W. F. Heard, B. A. Williams, and R. Ranade, “Significance of the particle size distribution modulus for strain-hardening-ultra-high performance concrete (SH-UHPC) matrix design,” Constr. Build. Mater., vol. 234, p. 117423, 2020, doi: 10.1016/j.conbuildmat.2019.117423.

Y. S. Tai and S. El-Tawil, “Effect of component materials and mixing protocol on the short-term performance of generic ultra-high-performance concrete,” Constr. Build. Mater., vol. 238, p. 117703, 2020, doi: 10.1016/j.conbuildmat.2019.117703.

A. Alsalman, C. N. Dang, and W. Micah Hale, “Development of ultra-high performance concrete with locally available materials,” Constr. Build. Mater., vol. 133, pp. 135–145, 2017, doi: 10.1016/j.conbuildmat.2016.12.040.

ACI Committee 234, “Guide for the Use of Silica Fume in Concrete,” Aci 234R-96, pp. 1–51, 2014, [Online]. Available: http://civilwares.free.fr/ACI/MCP04/234r_96.pdf.

H. K. Steven, K. Beatrix, and C. P. William, Design and Control of Concrete Mixtures, 14th ed. Skokie, Illinois, USA: Portland Cement Association, 2002.

ACI 234R-06, “234R-06 Guide for the Use of Silica Fume in Concrete,” Aci 234R-06, vol. 96, no. Reapproved, pp. 0–64, 2006.

Silica Fume association, “Silica Fume User’s Manual,” Fed. Highw. Adm., pp. 1–194, 2005.

J. D. Birchall, A. J. Howard, and K. Kendall, “Flexural strength and porosity of cements,” Nature, vol. 289, no. 5796. pp. 388–390, 1981, doi: 10.1038/289388a0.

S. Abbas, M. L. Nehdi, and M. A. Saleem, “Ultra-High Performance Concrete: Mechanical Performance, Durability, Sustainability and Implementation Challenges,” Int. J. Concr. Struct. Mater., vol. 10, no. 3, pp. 271–295, 2016, doi: 10.1007/s40069-016-0157-4.

M. M. S. Ridha, K. F. Sarsam, and I. A. S. Al-Shaarbaf, “Experimental Study and Shear Strength Prediction for Reactive Powder Concrete Beams,” Case Stud. Constr. Mater., vol. 8, no. March, pp. 434–446, 2018, doi: 10.1016/j.cscm.2018.03.002.

E. Fehling, M. Schmidt, J. C. Walraven, T. Leutbecher, and S. Frohlich, Ultra-High Performance Concrete UHPC fundamentals, Design, Examples, 1st ed. Kassel, Germany: Ernst and Sohn, 2014.

N. Abdelmelek and É. Lublóy, “Effects of Elevated Temperatures on the Properties of High Strength Cement Paste Containing Silica Fume,” Period. Polytech. Civ. Eng., vol. 66, no. 1, pp. 127–137, 2022, doi: 10.3311/PPci.17549.

A. Rezaee and M. reza Ahanger, “Mix proportioning of high-performance concrete by applying the GA and PSO,” Int. J. Smart Electr. Eng., vol. 1, no. 1, pp. 1–8, 2012.

V. Thakur, D. Mandloi, D. Khare, and S. Gupta, “Significance of Silica Fume in Enhancing the Quality of Concrete,” Int. J. Eng. Res., vol. 96, no. 22, pp. 2319–6890, 2013.

V. Nežerka, P. Bílý, V. Hrbek, and J. Fládr, “Impact of silica fume, fly ash, and metakaolin on the thickness and strength of the ITZ in concrete,” Cem. Concr. Compos., vol. 103, pp. 252–262, 2019, doi: 10.1016/j.cemconcomp.2019.05.012.

J. V. Yen Lei, “SHEAR STRENGTH OF 160 MPa STEEL FIBRE REINFORCED REACTIVE POWDER CONCRETE BRIDGE GIRDERS WITHOUT STIRRUPS,” Inst. Eng. Malaysia, vol. 67, pp. 41–46, 2006.

Y. L. Voo, S. J. Foster, and R. I. Gilbert, “Shear strength of fiber reinforced reactive powder concrete prestressed girders without stirrups,” J. Adv. Concr. Technol., vol. 4, no. 1, pp. 123–132, 2006, doi: 10.3151/jact.4.123.

A. Jabbar, M. Hamood, and D. Mohammed, “Mitigation of the Factors Affecting the Autogenous Shrinkage of Ultra-High Performance Concrete,” Eng. Technol. J., vol. 39, no. 12, pp. 1860–1868, 2021, doi: 10.30684/etj.v39i12.2155.

S. Arshad, M. B. Sharif, M. Irfan-ul-Hassan, M. Khan, and J. L. Zhang, “Efficiency of Supplementary Cementitious Materials and Natural Fiber on Mechanical Performance of Concrete,” Arab. J. Sci. Eng., vol. 45, no. 10, pp. 8577–8589, 2020, doi: 10.1007/s13369-020-04769-z.

B. A. Tayeh, M. H. Akeed, S. Qaidi, and B. H. A. Bakar, “Influence of sand grain size distribution and supplementary cementitious materials on the compressive strength of ultrahigh-performance concrete,” Case Stud. Constr. Mater., vol. 17, no. September, p. e01495, 2022, doi: 10.1016/j.cscm.2022.e01495.

J. Gražulytė, A. Vaitkus, O. Šernas, and D. Čygas, “Effect of silica fume on high-strength concrete performance,” World Congr. Civil, Struct. Environ. Eng., no. October, pp. 162-1-162–6, 2020, doi: 10.11159/icsect20.162.

K. N. Ismail, K. Hussin, M. Sobri, I. Pusat, P. Kejuruteraan, and A. Sekitar, “Physical, Chemical & Mineralogical Properties of Fly Ash,” J. Nucl. Relat. Technol., vol. 4, pp. 47–51, 2007.

J. Gołaszewski, T. Ponikiewski, A. Kostrzanowska-Siedlarz, and P. Miera, “Technological aspects of usage of calcareous fly ash as a main constituent of cements,” Period. Polytech. Civ. Eng., vol. 65, no. 2, pp. 619–637, 2021, doi: 10.3311/PPci.11164.

Astm, “Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use,” Annu. B. ASTM Stand., no. C, pp. 3–6, 2010, doi: 10.1520/C0618.

P. Zhang, S. Han, S. Ng, and X. H. Wang, “Advanced Cementitious Building Materials with Applications in Civil Engineering,” Adv. Civ. Eng., vol. 2017, 2017, doi: 10.1155/2017/9654910.

A. Mardani-Aghabaglou, G. Inan Sezer, and K. Ramyar, “Comparison of fly ash, silica fume and metakaolin from mechanical properties and durability performance of mortar mixtures view point,” Constr. Build. Mater., vol. 70, pp. 17–25, 2014, doi: 10.1016/j.conbuildmat.2014.07.089.

E. A. Abdun-Nur et al., “Use of Fly Ash in Concrete.,” ACI Mater. J., vol. 84, no. 5, pp. 381–409, 1987, doi: 10.14359/1612.

Michael Thomas, “Optimizing the Use of Fly Ash in Concrete,” Portl. Cem. Assoc., pp. 1–24, 2007.

T. T. Nguyen and V. H. Dang, “Experimental and Probabilistic Investigations of the Effect of Fly Ash Dosage on Concrete Compressive Strength and Stressstrain Relationship,” Period. Polytech. Civ. Eng., vol. 66, no. 4, pp. 1098–1113, 2022, doi: 10.3311/PPci.20607.

M. L. KOSMATKA, Steven H.; WILSON, Design and Control of Concrete Mixtures – The Guide to Applications, Methods and Materials. 2011.

M. A. Megat Johari, J. J. Brooks, S. Kabir, and P. Rivard, “Influence of supplementary cementitious materials on engineering properties of high strength concrete,” Constr. Build. Mater., vol. 25, no. 5, pp. 2639–2648, 2011, doi: 10.1016/j.conbuildmat.2010.12.013.

A. A. M. Dom, N. A. A. Hamid, N. Jamaluddin, and H. Othman, “Influence of Ground Granulated Blast Furnace Slag (GGBS) as Cement Replacement on the Properties of Sand Cement Brick,” Int. J. Sustain. Constr. Eng. Technol., vol. 13, no. 4, pp. 338–349, 2022, doi: 10.30880/ijscet.2022.13.04.029.

ACI 233R-03, “Slag Cement in Concrete and Mortor,” vol. Reapproved, 2011.

T. Bulletins and R. Documents, “TB-0102 — Ground Granulated Blast- Furnace Slag : Its Chemistry and Use with Chemical Admixtures Technical Bulletin,” pp. 100–102, 1950.

B. A. Zulu, S. Miyazawa, and N. Nito, “Properties of blast-furnace slag cement concrete subjected to accelerated curing,” Infrastructures, vol. 4, no. 4, 2019, doi: 10.3390/infrastructures4040069.

A. C. I. 318-19 Committee, Building Code Requirements for Concrete and Commentary, First. Farmington Hills, MI 48331: ACI, 2019.

R. Siddique and D. Kaur, “Properties of concrete containing ground granulated blast furnace slag (GGBFS) at elevated temperatures,” J. Adv. Res., vol. 3, no. 1, pp. 45–51, 2012, doi: 10.1016/j.jare.2011.03.004.

ACI Committee 234, “Guide for the Use of Silica Fume in Concrete, ACI Committee,” Am. Concr. Inst., vol. 96, pp. 1–51, 2006.

G. Ayim-Mensah and M. Radosavljevic, “Influence of Ground Granulated Blast Furnace Slag on the compressive strength and ductility of Ultra High-performance fibre reinforced cementitious composites,” Cement, vol. 8, no. January 2021, p. 100030, 2022, doi: 10.1016/j.cement.2022.100030.

M. A. Chandak and P. Y. Pawade, “Influence of Metakaolin in Concrete Mixture: A Review,” Int. J. Eng. Sci., no. May, pp. 37–41, 2018.

K. Sasikala, S. Vamsi, H. Prasad, D. Venkateswarlu, and A. Info, “An Experimental Study on Metakaolin on the Performance of High Strength Concrete as a Partial Replacement to Cement,” Partial Replace. to Cem. Int. J. Mod. Trends Sci. Technol., vol. 8, no. 06, p. 62, 2022, doi: 10.46501/IJMTST0806007.

Y. Hou, W. Si, X. Peng, and N. Xing, “Comparison of Effect of Metakaolin and silica Fume on Fly Ash Concrete Performance,” MATEC Web Conf., vol. 67, pp. 6–11, 2016, doi: 10.1051/matecconf/20166707010.

A. Arora, A. Almujaddidi, F. Kianmofrad, B. Mobasher, and N. Neithalath, “Material design of economical ultra-high performance concrete (UHPC) and evaluation of their properties,” Cem. Concr. Compos., vol. 104, no. May, p. 103346, 2019, doi: 10.1016/j.cemconcomp.2019.103346.

S. Wild, J. M. Khatib, and A. Jones, “Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete,” Cem. Concr. Res., vol. 26, no. 10, pp. 1537–1544, 1996, doi: 10.1016/0008-8846(96)00148-2.

A. A. Ramezanianpour, E. Ghiasvand, I. Nickseresht, M. Mahdikhani, and F. Moodi, “Influence of various amounts of limestone powder on performance of Portland limestone cement concretes,” Cem. Concr. Compos., vol. 31, no. 10, pp. 715–720, 2009, doi: 10.1016/j.cemconcomp.2009.08.003.

D. Wang, C. Shi, N. Farzadnia, Z. Shi, H. Jia, and Z. Ou, “A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures,” Constr. Build. Mater., vol. 181, pp. 659–672, 2018, doi: 10.1016/j.conbuildmat.2018.06.075.

T. Bulletins and R. Documents, “TB-0102 — Ground Granulated Blast- Furnace Slag : Its Chemistry and Use with Chemical Admixtures Technical Bulletin,” 1950.

P. Kończalski and J. Katzer, “Strength and durability characteristics of cement-lime mortars with fly ash and slag as aggregate substitutes,” Period. Polytech. Civ. Eng., vol. 65, no. 3, pp. 901–908, 2021, doi: 10.3311/PPci.18147.

A. M. Mohammed, D. S. Asaad, and A. I. Al-Hadithi, “Experimental and statistical evaluation of rheological properties of self-compacting concrete containing fly ash and ground granulated blast furnace slag,” J. King Saud Univ. - Eng. Sci., vol. 34, no. 6, pp. 388–397, 2022, doi: 10.1016/j.jksues.2020.12.005.

M. Elsayed, B. A. Tayeh, Y. I. Abu Aisheh, N. A. El-Nasser, and M. A. Elmaaty, “Shear strength of eco-friendly self-compacting concrete beams containing ground granulated blast furnace slag and fly ash as cement replacement,” Case Stud. Constr. Mater., vol. 17, no. July, p. e01354, 2022, doi: 10.1016/j.cscm.2022.e01354.

V. V. Praveen Kumar and D. Ravi Prasad, “Influence of Supplementary Cementitious Materials on Strength and Durability Characteristics of Concrete,” Adv. Concr. Constr., vol. 7, no. 2, pp. 75–85, 2019, doi: 10.12989/acc.2019.7.2.075.

M. K. Sharbatdar, M. Abbasi, and P. Fakharian, “Improving the properties of self-compacted concrete with using combined silica fume and metakaolin,” Period. Polytech. Civ. Eng., vol. 64, no. 2, pp. 535–544, 2020, doi: 10.3311/PPci.11463.

H. H. Alghazali and J. J. Myers, “Shear behavior of full-scale high volume fly ash-self consolidating concrete (HVFA-SCC) beams,” Constr. Build. Mater., vol. 157, pp. 161–171, 2017, doi: 10.1016/j.conbuildmat.2017.09.061.

M. Arezoumandi and J. S. Volz, “Effect of fly ash replacement level on the shear strength of high-volume fly ash concrete beams,” J. Clean. Prod., vol. 59, pp. 120–130, 2013, doi: 10.1016/j.jclepro.2013.06.043.

C. N. Sushma, R. L. Ramesh, and P. S. Nagaraja, “Experimental Study on Shear Strength Behavior of Super Plasticized Fiber Reinforced Concrete Beams With High Reactive Metakaolin,” Int. J. Res. Eng. Technol., vol. 05, no. 03, pp. 43–49, 2016, doi: 10.15623/ijret.2016.0503009.

Downloads

Published

2023-12-01

Issue

Section

Civil Engineering

How to Cite

Jabbar, A. (2023). Using Cementitious Materials to Enhance Concrete Properties and Improve the Environment: A Review. Wasit Journal of Engineering Sciences, 11(3), 140-154. https://doi.org/10.31185/ejuow.Vol11.Iss3.482